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Abstract 

This paper proposes a method for stock prediction and portfolio optimization as a part of quantitative trading based on a 

combination of Bi-RNN and a modified snake optimization algorithm (MSOA) to build optimal portfolios and outperform 

conventional models and benchmarks. Methods/Analysis: We employ the Bi-RNN model, which processes historical stock 

data in both forward and backward directions to unveil intricate temporal dependencies. MSOA is used to fine-tune the 

hyperparameters of the Bi-RNN with enhancements such as Latin Hypercube Sampling for initialization, dynamic 

temperature adjustment, adaptive learning rates, and hybrid exploration-exploitation mechanisms. The Markowitz mean-

variance approach is used to optimize the portfolio from asset allocations that the MSOA then improves. The model is 

evaluated on the S&P 500 from 1993 to 2020. Results: Such findings in experiments indicate that the proposed model 

outperforms baseline models, e.g., LSTM, GRU, and HMM, with lower Mean Squared Percentage Error (MSPE) values 

and higher Sharpe ratios of constructed portfolios. For instance, Portfolio 3 produced a 10.9% expected return with a 

standard deviation of 12.9%, delivering risk-adjusted returns that exceed those of the S&P 500. Novelty/Improvement: A 

strong integrated approach of deep learning and advanced optimization techniques is proposed for stock prediction and 

portfolio optimization, which achieves notable improvements in terms of accuracy and efficiency. The proposed approach 

overcomes the drawbacks of traditional algorithms, making it a valuable tool for financial decision-making. 

Keywords: Stock Prediction; Bi-RNN; MSOA; Portfolio Construction; Stock Market Forecasting; Deep Learning; Time Series Analysis. 

1. Introduction 

In recent years, economic variable prediction has been of special importance for strategic managers in the private 

and public sectors in order to regulate economic affairs and relations, so that the need for tools and methods of predicting 

variables with the least amount of error is noticeable. Due to the importance and special position of financial markets 

and the effect they have on parallel markets, which shows their strong role in the economy of every country, prediction 

in this area is of special importance and has become an integral and important part of this area. 

The higher the accuracy of this prediction and the less error it has, the more confidence investors have because in 

this way they can minimize their risk. In order to increase the accuracy of prediction, it is possible to recognize the 

important factors affecting the financial markets and decrease the predicting errors with their help. 

The stock market signifies a multifaceted and ever-evolving system that has gathered extensive research and scrutiny 

over the years. For investors, policymakers, and financial institutions, the capacity to accurately predict stock prices and 
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trends is important, as it influences asset choices, risk management approaches, and economic strategies. However, 

forecasting stock prices poses important challenges due to the inherent unpredictability and fluctuations characteristic 

of the market. 

The use of deep learning and machine learning techniques has grown in popularity recently in the field of stock price 

forecasting. These advanced methods have shown encouraging results in predicting stock prices and trends, which has 

led to their increasing popularity among investors and financial institutions. However, the majority of current research 

has focused on traditional machine learning techniques, like random forests and support vector machines (SVMs), which 

have limits in their ability to recognize intricate patterns and relationships in the data.  

Recently, recurrent neural networks (RNNs) have found extensive application in sequence prediction tasks, including 

natural language processing and speech recognition. RNNs are particularly advantageous for stock price forecasting, as 

they are adept at recognizing complex patterns and relationships in the data while accommodating the sequential nature 

of stock price information. 

Thio-Ac et al. [1] introduced a system of decision support to optimize the portfolios of stock. Hidden Markov Model 

has been utilized for 95% accurate stock cost predictions during a five-day duration. The system employed Quadratic 

Programming to enhance asset distribution, concentrating on a maximum of 15 established blue-chip firms. Important 

metrics such as Bollinger Bands, RSI, and MACD provided definitive recommendations to hold, sell, or buy. It 

continuously tracked the Philippine Stock Exchange, alerting users to considerable fluctuations. Designed using Python 

and C#, the models have been trained using a steady dataset spanning five years for reliable outcomes. The findings 

indicated good forecast accuracy, with a value of 98.923% for peak prices and 98.741% for low prices, which supported 

investment techniques. The research contrasted SPOT-allotted portfolios with stochastic allocations, showing a 

significant distinction in profit and loss distribution. This highlighted its importance for making profitable and informed 

choices in stock trading. 

Xiao & Tang [2] suggested a quantitative trading system on the basis of LSTM using Python for model prediction 

and learning. By adapting the model’s internal variables, the stock forecast’s accuracy was enhanced. The stock’s 

historical data was utilized for forecasting and learning trends of future stock. However, there were some problems 

regarding the efficiency of the system in the long term, hence requiring some additional investigations in this field. 

Martínez-Barbero et al. [3] integrated machine learning approaches, the classical mean–variance optimization 

algorithm, and Long Short-term Memory (LSTM) with the purpose of providing accurate forecasted returns and 

generating money-making portfolios for 10 holding intervals. Moreover, it presented diverse contexts of finance. The 

suggested algorithm was tested and trained using historical EURO STOXX 50® Index data. The findings represented 

that the suggested LSTM could accomplish minor errors of forecast, as the MSE average of 10 holding intervals was 

0.00047, and the MAE’s average was 0.01634. Moreover, the accuracy of prediction during 10 investment intervals was 

95.8%. 

Huang et al. [4] suggested a kind of method to improve returns of investment by combining LSTM forecasts as well 

as the EOW (Evolutionary Operating-weights) algorithmic technique. The suggested approach utilized an LSTM with 

several layers to predict prices of future stock, including the forecasts with data of the actual market. The findings of the 

current investigation represented that this could perform better than the other models. 

Jeribi et al. [5] introduced an expert framework for stock market prediction on the basis of deep learning, named 

DLEF-SM. The approach used improved jellyfish-induced filtering (IJF-F) to preprocess the data and efficiently 

analyzed raw data and eliminated artifacts. To overcome the issue of imbalanced data and improve the quality of data, 

previously trained CNNs (Convolutional Neural Networks), namely ResNet-50 and VGGFace2, were utilized for 

extraction of features. In addition, an IBWO (Improved Black Window Optimization) was developed for the selection 

of features that diminished the dimensionality of data and prevented the underfitting issue. In order to accurately predict 

the stock market, Artificial Neural Network and Deep Reinforcement were combined. The prediction accuracy of the 

model for DAX markets, S&P500-L, and S&P500-S was, in turn, 98.825%, 98.235%, and 99.562%. 

However, there are other things that go on in real-world stock data that existing models are not able to capture well, 

especially during market turbulence. Many conventional algorithms do not efficiently balance exploration and 

exploitation, resulting in local optima or so-called poor solutions. Moreover, though RNNs perform well when 

modeling sequential data, they are limited with regard to certain hyperparameters and optimization procedures [6]. 

To overcome these limitations, this study proposes a new methodology based on a bidirectional recurrent neural 

network (Bi-RNN) by using a modified snake optimization algorithm (MSOA). Bi-RNN architecture passes the 

historical stock data in the forward and reverse directions, which in turn assists in capturing the complex temporal 

dependencies. On the other hand, MSOA optimizes hyperparameters for the model in a dynamic manner by adopting 
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novel methods like Latin Hypercube Sampling (LHS) to create samples, dynamically controlling the temperature in 

annealing, dynamically changing the learning rate adaptation, and using hybrid exploration-exploitation. The goal of 

this integration is to increase prediction accuracy and create optimized portfolios exceeding benchmark indices like the 

S&P 500. 

2. Dataset Description 

2.1. Dataset 

The dataset used in this research is the “S&P 500 Stocks” dataset, which is available to the public on Kaggle. This 

dataset includes historical stock prices for the S&P 500 index, a prominent stock market index that reproduces the market 

capitalization of 500 large, publicly traded corporations in the United States. 

Comprising 505,744 rows and 11 columns, the dataset spans approximately 27 years, from January 3, 1993, to 

February 19, 2020. It contains daily stock prices for all 505 companies that constitute the S&P 500 index, along with 

the index itself. The data is planned in a time-series format, with each row reliable to a definite trading day. 

The columns presented in the dataset are as follows: 

 Date: The trading day is shown in the format YYYY-MM-DD. 

 Open: The stock/index opening price on the detailed date. 

 High: The maximum noted price of the stock/index on that date. 

 Low: The minimum noted price of the stock/index on that date. 

 Close: The closing price of the stock/index on the definite date. 

 Adj Close: The adjusted closing price of the stock/index on that date, enhanced for dividends and stock splits. 

 Volume: The total trading volume of the stock/index on the definite date. 

This dataset suggests a detailed and extensive impression of the S&P 500 index and its basic companies, rendering 

it an excellent source for research and investigation within the domains of economics and finance. It can be used for 

several purposes, including risk assessment, portfolio optimization, and stock price prediction. 

It is important to note that the dataset is updated often, which may result in changes over time in the total number of 

rows and columns. 

2.2. Data Preprocessing 

Data preprocessing is an important stage in preparing the data for examination. In this research, we applied numerous 

preprocessing stages to the data to guarantee that it was in an appropriate format for investigation. 

A) Normalization 

Normalization denotes the technique of adjusting the data to a standardized range, typically between 0 and 1. This 

approach is used to guarantee that features with meaningfully larger ranges do not overshadow the analysis. In this 

example, we used the Min-Max Scaler for the normalization of the data. 

B) Feature Scaling 

Feature scaling includes changing the data so that it has a mean of zero and a variance of one. This technique 

improves the constancy and effectiveness of the analysis. In this instance, we used the Standard Scaler to perform the 

scaling of the data. 

C) Data Cleaning 

We cleaned the data by eliminating any duplicates, inconsistencies, and outliers. We also removed any features that 

were not relevant to the analysis. 

3. Research Methodology 

The block diagram showing the planned method is exposed in Figure 1. The proposed approach is shown in a block 

diagram containing numerous phases, starting with Data Preprocessing. In this primary stage, the dataset experiences 

cleaning to address missing values, normalization, and formatting for feature extraction. Following this, the cleaned data 

is managed in the Feature Extraction phase, where technical indicators are used to recognize patterns and trends in stock 

prices. 
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Figure 1. Block diagram of the proposed methodology 

These derived features are used to train a Bi-RNN model that is enhanced by a recently changed version of the snake 

optimization algorithm, which predicts future stock prices. The forecast prices are then practical for Portfolio 

Optimization through the Markowitz mean-variance optimization method. The effectiveness of the optimized portfolio 

is evaluated using the Sharpe ratio during the Portfolio Performance Assessment phase, concluding in the presentation 

of the optimized portfolio as the final output. In the following, the step-by-step phases of the stock prediction have been 

described in detail. 

4. Bi-Directional RNNs 

4.1. A Simple Review 

A Bidirectional Recurrent Neural Network (Bi-RNN) is a different type of Recurrent Neural Network (RNN) that 

processes input data in both forward and backward directions. This dual processing ability permits the network to 

effectively capture contextual addictions by taking into account both preceding and subsequent situations. 

In contrast to a unidirectional RNN, which examines input sequences in a single direction, a Bi-RNN overcomes the 

limitation of failing to grasp the complete context of the input data. This is particularly important in applications such 

as language translation, where understanding the basis is important for creating accurate forecasts. 

A Bi-RNN is composed of two distinct RNNs: one that processes the input data from left to right (the forward RNN) 

and another that processes it from right to left (the backward RNN). The outputs from these two RNNs are subsequently 

combined, or “merged,” to produce the model's final output. The inclusion of the forward and backward RNN outputs 

can be performed in various manners, tailored to the specific requirements of the model and the task at hand. These 

methods contain concatenation, where the outputs are joined to generate the final output; addition, where the outputs are 

summed element-wise; and averaging, where the outputs are averaged element-wise to yield the final output. 

In Bi-RNN, for the Forward RNN, 

ℎ𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑥ℎ × 𝑋𝑡 + 𝑊ℎℎ × ℎ𝑡−1 + 𝑏ℎ)   (1) 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊ℎ𝑜 × ℎ𝑡 + 𝑏𝑜) (2) 

where, 𝑋 denotes the input data, ℎ represents the hidden state, and 𝑜 signifies the output. 

also, for the backward RNN: 

ℎ𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑥ℎ ∗  𝑋𝑇−𝑡 +  𝑊ℎℎ ∗  ℎ𝑡+1 + 𝑏ℎ) (3) 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊ℎ𝑜 × ℎ𝑡 + 𝑏𝑜) (4) 

By merging Outputs, 

𝑜 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑜𝑓𝑜𝑟𝑤𝑎𝑟𝑑 , 𝑜𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑) (5) 

where, 𝑊𝑥ℎ, 𝑊ℎℎ, 𝑊ℎ𝑜, 𝑏ℎ, and 𝑏𝑜 are parameters that can be learned, sigmoid denotes to the sigmoid activation function, 

and concatenate indicates the operation of combining outputs. 
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4.2. Optimizing Bi-RNN 

To advance the performance of a Bi-RNN, it is significant to generate a fitness function that evaluates the model’s 

effectiveness on a detailed task. This fitness function is normally signified as a loss function, which is diminished 

throughout the training process. In this study, we have used the Mean Squared Percentage Error (MSPE) for this 

objective. The MSPE serves as an indicator of the average squared percentage deviation between predicted values and 

actual outcomes. The mathematical expression for MSPE is represented as follows: 

𝑀𝑆𝑃𝐸 = (
1

𝑛
) × ∑ [

(𝑦𝑡𝑟𝑢𝑒[𝑖] −  𝑦𝑝𝑟𝑒𝑑[𝑖])
2

𝑦𝑡𝑟𝑢𝑒[𝑖]
2 ]

𝑛

𝑖=1

 (6) 

where, 𝑛 signifies the total number of samples, 𝑦𝑡𝑟𝑢𝑒 shows the actual value, 𝑦𝑝𝑟𝑒𝑑  shows the forecast value, and 𝑖 
denotes to the sample index. Figure 2 illustrations the block diagram of a general Bi-RNN. 

 

Figure 2. The block diagram of a general Bi-RNN 

Once employing the MSPE objective function, it is essential to fine-tune several hyperparameters. Among these, 

alpha (α) serves as the percentage threshold for the loss function, influencing the model's emphasis on errors. Lower 

values, such as 0.05, prioritize small errors, while higher values, like 0.2, focus on larger errors. Moreover, beta (β) must 

be calibrated; this parameter acts as a weight for the MSPE loss function, where elevated values (e.g., 2) impose a greater 

penalty on large errors compared to small ones, whereas lower values (e.g., 1) treat both error types equally.  

Epsilon (ε) is another critical parameter, representing the value added to the denominator of the MSPE loss function 

to avert division by zero. Moreover, the learning rate (𝑙𝑟), which dictates the step size for the optimization algorithm, 

requires adjustment, alongside the batch size (𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒), which indicates the number of samples processed in a single 

batch during training, and the number of epochs (𝑒𝑝𝑜𝑐ℎ𝑠), which specifies how many times the training data will be 

iterated over. 

Table 1 indicates the hyperparameter ranges for a Bi-RNN model with MSPE objective function for the proposed 

stock prediction: 

Table 1. The hyperparameter ranges for a Bi-RNN model 

Hyperparameter Range 

Alpha (α) 0.05 - 0.2 

Beta (β) 1 – 2 

Epsilon (ε) 1e-8 - 1e-4 

Learning Rate (lr) 1e-4 - 1e-2 

Batch Size (batch_size) 16 – 128 

Epochs (epochs) 50 – 200 

Number of Hidden Units (n_hidden) 50 – 200 

Number of Layers (n_layers) 1 – 3 

Dropout Rate (dropout) 0.2 - 0.5 

Activation Function (activation) tanh, sigmoid, ReLU 

Optimizer Adam, RMSProp, SGD 
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In this study, a newly modified version of the snake optimization algorithm has been used for optimizing the net Bi-

RNN model by minimizing the MSPE. The following section explains all details of the modified metaheuristic algorithm 

in detail. 

5. Modified Snake Optimization Algorithm 

Within the current exploration, the points of application and the way that snake optimization (SO) is expressed. This 

special algorithm is marked as a metaheuristic algorithm, replacing these animals’ way of mating. This community has 

been branched into 2 different bunches according to their gender, and different position upgrade strategies have been 

utilized relying on temperature and location of food; thus, the algorithm shows a pre-determined efficacy level. 

5.1. Initialization 

In this stage, some individuals are initialized within the search space to perform the consequent iterative adjustments. 

Furthermore, the initialization process is computed in the following manner: 

𝑋𝑖 = 𝑋𝑚𝑖𝑛 + 𝑟 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)  (7) 

In this situation, 𝑖𝑡ℎ the individual is represented by 𝑋𝑖, the highest and lowest limits are, in turn, communicated 

through 𝑋min and 𝑋𝑚𝑎𝑥 . The stochastic variable is 𝑟 that takes the esteem of 0 and 1. 

5.2. Clusters 

These animals are distributed into 2 different bunches, especially male candidates and female candidates. To 

demonstrate the actual operation, the taking after candidates have been utilized. 

𝑁𝑚 =
𝑁

2
  (8) 

𝑁𝑓 = 𝑁 − 𝑁𝑚  (9) 

where, to sum of animals is shown through 𝑁, the amount of male and female creatures has been, in turn, communicated 

through 𝑁𝑚 and 𝐹𝑚. 

5.3. Variable Definition 

The optimal male animal’s and nourishment location’ fitness values are, in turn, shown through𝑓𝑏𝑒𝑠𝑡,𝑚 and𝑓𝑓𝑜𝑜𝑑. 

Additionally, temperature is expressed through 𝑇𝑒𝑚𝑝 mathematically spoken to utilizing Equation 10, while the 

nutritional proportion is presented by 𝑄 calculated by Equation 11. 

𝑇𝑒𝑚𝑝 = exp (
−𝑡

𝑇
)  (10) 

𝑄 = 𝑐1 × exp (
𝑡−𝑇

𝑇
)  (11) 

where, the present amount and the maximum amount of emphases have been, in turn, shown through t and T. 

5.4. Exploration Stage (No Nutrition) 

Within the current stage, there’s not any food source available if the 𝑄 is lower than 0.25. Hence, the animals seek 

nourishment by determination and optimizing their position on an arbitrary premise. Hence, the total exploration of the 

search space is created. For males, this can be determined by the utilize of Equation 12. And for females, it is computed 

by the utilize of Equation 14. 

𝑋𝑖,𝑚(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑,𝑚(𝑡) ± 𝑐2 × 𝐴𝑚 × ((𝑋𝑚𝑎𝑥 − 𝑋min) × 𝑟𝑎𝑛𝑑 + 𝑋𝑚𝑖𝑛)  (12) 

where, the position of 𝑖𝑡ℎ male animals is illustrated via 𝑋𝑖,𝑚, 𝑋𝑟𝑎𝑛𝑑,𝑚 the depiction of a random male person,  and the 

𝑟𝑎𝑛𝑑 appears the stochastic number that takes the value of  0 and 1. Additionally, the male animal’s ability in finding 

food is  spoken to by 𝐴𝑚 mathematically by the consequent condition. 

𝐴𝑚 = exp (
−𝑓𝑟𝑎𝑛𝑑,𝑚

𝑓𝑖,𝑚

) (13) 

The cost value of the random male individual is illustrated by, 𝑓𝑟𝑎𝑛𝑑,𝑚, while the cost value of the male animal is 

presented through 𝑓𝑖,𝑚. 

𝑋𝑖,𝑓 = 𝑋𝑟𝑎𝑛𝑑,𝑓(𝑡 + 1) ± 𝑐2 × 𝐴𝑓 × ((𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) × 𝑟𝑎𝑛𝑑 + 𝑋𝑚𝑖𝑛)  (14) 

Where, the area of the 𝑖𝑡ℎ female animal is shown through 𝑋𝑖,𝑓, a randomly selected female animal is represented 

by 𝑋𝑟𝑎𝑛𝑑,𝑓 , and the ability of the female animal to finding food is illustrated by the 𝐴𝑓 that has been provided below: 
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𝐴𝑓 = exp (
−𝑓𝑟𝑎𝑛𝑑,𝑓

𝑓𝑖,𝑓
)  (15) 

where, the arbitrary female animal is explained through 𝑓𝑟𝑎𝑛𝑑,𝑓, and the 𝑖𝑡ℎ. And the female animal’s cost value is 

demonstrated by 𝑓𝑖,𝑓. 

5.5. Exploitation Stage (Local Search) 

At this stage, there is a few foods if 𝑄 is bigger than 0.25; hence, the exploitation stage gets carried out. It is 

demonstrated that the candidate is inside a warm era it the Temp is bigger than 0.6. The era of the candidate is adjusted 

through the application of equation. 

𝑋𝑖(𝑡 + 1) = 𝑋𝑓𝑜𝑜𝑑 ± 𝑐3 × 𝑇𝑒𝑚𝑝 × 𝑟𝑎𝑛𝑑 × (𝑋𝑓𝑜𝑜𝑑 − 𝑋𝑖,𝑗(𝑡))  (16) 

The position of an individual is illustrated by 𝑋𝑖, while the position of the optimal individual is depicted by 𝑋𝑓𝑜𝑜𝑑 . 

At that point, it is considered that an animal is within a freezing environment if 𝑇𝑒𝑚p is lower than 0.6. furthermore, 

the candidate may be in a state of mating or aggression. When the candidate enters the fighting state, the position of 

male animals is enhanced through the application of Equation 17, while the position of the female individual is adjusted 

using Equation 18. Besides, once the individual is in state of mating, the area of male individual is altered by the utilize 

of Equation 21, and the era of the female animal is adjusted by the utilize of Equation 22.  

𝑋𝑖,𝑚(𝑡 + 1) = 𝑋𝑖,𝑚(𝑡) + 𝑐3 × 𝐹𝑀 × 𝑟𝑎𝑛𝑑 × (𝑄 × 𝑋𝑏𝑒𝑠𝑡,𝑓 − 𝑋𝑖,𝑚(𝑡)) (17) 

where, the optimum female animal is characterized by 𝑋𝑏𝑒𝑠𝑡,𝑓,   and the fighting capability of the female animal is 

illustrated through 𝐹𝑀. 

𝑋𝑖,𝑓(𝑡 + 1) = 𝑋𝑖,𝑓(𝑡 + 1) + 𝑐3 × 𝐹𝐹 × 𝑟𝑎𝑛𝑑 × (𝑄 × 𝑋𝑏𝑒𝑠𝑡,𝑚 − 𝑋𝑖,𝑓(𝑡 + 1))  (18) 

where, the optimal female individual is illustrated through 𝑋𝑏𝑒𝑠𝑡,𝑚, and the female animal’s battle capacity is represented 

by 𝐹𝐹. Furthermore, 𝐹𝑀 and 𝐹𝐹are computed by the utilize of the consequent equations: 

𝐹𝑀 = exp (
−𝑓𝑏𝑒𝑠𝑡,𝑓

𝑓𝑖
)  (19) 

𝐹𝐹 = exp (
−𝑓𝑏𝑒𝑠𝑡,𝑚

𝑓𝑖
)  (20) 

The optimal cost value for the female individual is represented by 𝑓𝑏𝑒𝑠𝑡,𝑓, the optimal cost value for the male 

individual is shown by  𝑓𝑏𝑒𝑠𝑡,𝑚, and the cost value for the animal’s is demonstrated by 𝑓𝑖. 𝑖
𝑡ℎ                                                                       

𝑋𝑖,𝑚(𝑡 + 1) = 𝑋𝑖,𝑚(𝑡) + 𝑐3 × 𝑀𝑚 × 𝑟𝑎𝑛𝑑 × (𝑄 × 𝑋𝑖,𝑓(𝑡) − 𝑋𝑖,𝑚(𝑡))  (21) 

𝑋𝑖,𝑓(𝑡 + 1) = 𝑋𝑖,𝑓(𝑡) + 𝑐3 × 𝑀𝑓 × 𝑟𝑎𝑛𝑑 × (𝑄 × 𝑋𝑖,𝑚(𝑡) − 𝑋𝑖,𝑓(𝑡))  (22) 

where, the regenerative capability of the female and male animals are, in turn, illustrated by 𝑀𝑓 and 𝑀𝑚. 

Furthermore, 𝑀𝑚 and 𝑀𝑓 are represented by the following equations:  

𝑀𝑚 = exp (
−𝑓𝑖,𝑓

𝑓𝑖,𝑚
)  (23) 

𝑀𝑓 = (
−𝑓𝑖,𝑚

𝑓𝑖,𝑓
)  (24) 

When, the most exceedingly bad female male animals are, in turn, demonstrated by 𝑋𝑤𝑜𝑟𝑠𝑡,𝑚 and 𝑋𝑤𝑜𝑟𝑠𝑡,𝑓. 

The subsequent steps of the current optimizer’s execution are outlined as follows: 

Stage 1. The lower and upper boundary have been denoted by 𝐿𝐵 and 𝑈𝐵, the problem’s issue has been outlined by 

𝐷𝑖𝑚,the population size is represented by 𝑁, the maximum amount of iteration is shown by T, and the current 

quantity of iteration is indicated by  𝑡, got to be initialized.  it is important to note that. 𝐷𝑖𝑚, 𝑈𝐵, and 𝐿𝐵 are 

considered as variables of the problem, with the context pertaining to the description of the test problem. 

Stage 2. In the current stage, the population is categorized into 2 different classes by the utilize of Equations 8 and 9. 

Stage 3. The method advanced to stage 4 if 𝑡 ≤ 𝑇. If this is not satisfied, the process will be terminated. 

Stage 4. The optimal male and female individuals, get found, and extent food and temperature utilizing by Equations 

10 and 11. 
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Stage 5. The female and male animal’s circumstances get overhauled by the utilize of Equations 12 and 14 if the extent 

of food falls below 0.25, at that point stage 3 will be executed. Conversely, if 𝑄 is bigger than 0.25, phase 6 

must be implemented.  

Stage 6. During this stage, Equation 16 is carried out to adjust the animal’s era if 𝑇𝑒𝑚𝑝 is bigger than 0.6. The position 

of both female and male individuals is to be improved by application of Equations 17 and 18 once 𝑟𝑎𝑛𝑑 > 0.6 

and 𝑇𝑒𝑚𝑝 ≤ 0.6. Finally, the location of both female and male animals should be improved using Equations 

21 and 22 if 𝑟𝑎𝑛𝑑 and 𝑇𝑒𝑚𝑝 are both less than or equal to 0.6. following this, the worst female and male 

animals must be improved. If 𝑟𝑎𝑛𝑑 and 𝑇𝑒𝑚𝑝 are equal to or less than 0.6 and 𝑒𝑔𝑔 = 1. If this condition is 

not met, this procedure has got to begin from stage 3.  

Stage 7. The optimal animal must be restored. 

5.6. Improved Version 

The original Snake Optimization Algorithm (SOA) is a metaheuristic approach that draws inspiration from the 

mating behaviors exhibited by snakes. However, this main algorithm presents certain drawbacks, counting insufficient 

variety in its search mechanism and a tendency to become trapped in local optima. To solve these problems, we present 

an improved different of the algorithm, represented to as MSOA.  

We present several significant enhancements to the original Snake Optimization Algorithm. Firstly, an innovative 

initialization technique has been presented that uses Latin Hypercube Sampling (LHS) to generate a more varied and 

illustrative initial population, changing the random initialization method previously used. Secondly, a dynamic 

temperature modification mechanism has been combined to modify the temperature according to the iteration count, 

thereby enabling a more effective balance between exploration and exploitation.  

Also, we adopt an adaptive learning rate approach, where the learning rate is improved in response to the individual's 

fitness value, promoting more efficient convergence of the algorithm. Lastly, a hybrid strategy has been proposed for 

exploration and exploitation, empowering the algorithm to alternate between these two processes based on both the 

temperature and the fitness value of the individual, thus improving the overall search efficiency. 

For modification, in the initialization, we have: 

𝑋𝑖 = 𝑋𝑚𝑖𝑛 + 𝑟LHS × (𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛) (25) 

where, the Latin Hypercube Sampling (LHS) can be attained as follows: 

Algorithm 1. Latin Hypercube Sampling 

Step 1: Define the problem parameters 

 𝑛: the number of dimensions (variables) 

 𝑁: the number of samples to generate 

 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥: the minimum and maximum bounds for each dimension 

Step 2: Create a hypercube grid 

 Divide each dimension into 𝑁 equal intervals, creating a grid with 𝑁𝑛 cells 

 Each cell has a volume of 
(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)𝑛

𝑁𝑛
 

Step 3: Permute the intervals 

 Permute the intervals in each dimension to create a randomized order 

 This is done to ensure that the samples are not correlated with each other 

Step 4: Sample a point within each cell 

 For each cell, sample a point uniformly at random within the cell 

 The point is generated as 𝑋𝑖 = 𝑥𝑚𝑖𝑛 + (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) ×
𝑖+𝑟𝑖

𝑁
, where i is the cell index and r_i is 

a random number between 0 and 1 

Step 5: Repeat for all dimensions 

 Repeat steps 3-4 for all 𝑛 dimensions 
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The next step is to use Dynamic Temperature. Based on this mechanism, we have: 

𝑇𝑒𝑚𝑝 = 𝑒𝑥𝑝 (−
𝑡

𝑇
) × (1 − 𝛼 × (

𝑡

𝑇
)) (26) 

where, 𝛼 is a parameter that governs the rate at which the temperature decreases. 

The next mechanism for updating is based on Adaptive Learning Rate. This mechanism has been formulated in this 

study as follows:  

𝑐3 = 𝑐3𝑚𝑎𝑥
× 𝑒𝑥𝑝 (

−𝑓𝑖

𝑓𝑏𝑒𝑠𝑡

) (27) 

where, 𝑐3𝑚𝑎𝑥
 defines the upper limit of the learning rate, 𝑓𝑖 signifies the fitness value of the individual, and 𝑓𝑏𝑒𝑠𝑡 is the 

highest fitness value recognized thus far. 

Finally, the Hybrid Exploration-Exploitation mechanism has been used for enhancing the algorithm. This mechanism 

can be found in the following equation: 

Algorithm 2. Hybrid Exploration-Exploitation 

if Temp > 0.6 and Q > 0.25   

𝑋𝑖(𝑡 + 1)  =  𝑋𝑓𝑜𝑜𝑑 ± 𝑐3 × 𝑇𝑒𝑚𝑝 × 𝑟𝑎𝑛𝑑 × (𝑋𝑓𝑜𝑜𝑑 − 𝑋𝑖(𝑡))  

else 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑐3 × 𝑟𝑎𝑛𝑑 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) 

here, 𝑟𝑎𝑛𝑑 defines a random number and 𝑋𝑓𝑜𝑜𝑑  shows the optimal solution, 𝑋𝑖 signifies the i-th individual, 𝑄 refers to 

the nutritional proportion. 

The MSOA algorithm purposes to improve the efficacy of the original SOA by fostering greater diversity in the 

search process by adjusting the learning rate and attaining a balance between exploration and exploitation. 

It should be noted that, in order to overcome the drawbacks of the original SOA, which are seizing less stable 

fold/low-overlapping solutions and getting stuck in local optima, the MSOA is proposed, which consists of four major 

alterations on SOA. We proposed introducing Latin Hypercube Sampling (LHS) for initialization instead of random 

initialization. LHS improves the predictive accuracy of the Bi-RNN by exploring a diverse range of hyperparameter 

configurations because it guarantees that the search space is appropriately covered. Secondly, the proposed dynamic 

temperature adjustment mechanism mitigates between exploration and exploitation by balancing them, initiating them 

with a high temperature to escape local optima and gradually adjusting it to refinement of the solution in order to provide 

faster and more stable convergence. 

Third, it employs an adaptive learning rate specific to the fitness value of each candidate design to enhance the 

convergence process by expending resources in promising regions of the search space. Fourth, the Bi-RNN that 

undergirds our method is enhanced to be a hybrid exploration-exploitation mechanism, alternating between exploring 

new areas of the search space and fine-tuning known solutions, getting better robustness and generalization of our 

method. These modifications to MSOAs combine to enhance the Bi-RNN's predictive performance on stock prediction, 

achieving greater accuracy with faster convergence, greater robustness against overfitting, and better generalization to 

unseen data than traditional models and a benchmark against the S&P 500 index. 

6. Portfolio Optimization 

Portfolio optimization shows an important stage in the asset process to allowing investors to advance their returns 

while reducing associated risks. This section will determine the portfolio optimization methods used in this study as 

well as the results obtained. 

A Markowitz mean-variance optimization methodology was used to develop the optimal portfolios. This 

methodology focuses on maximizing the portfolio's expected return while concurrently lessening the related risk, which 

is measured by the standard deviation of the returns. The formulation of the Markowitz mean-variance optimization 

problem is as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝐸(𝑅𝑝) = ∑(𝑤𝑖 × 𝐸(𝑅𝑖)) (27) 
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Subject to: 

∑(𝑤𝑖) = 1 (28) 

∑(𝑤𝑖 × 𝜎𝑖) ≤ 𝜎𝑝 (29) 

where: 𝐸(𝑅𝑝) signifies the expected return of the portfolio, 𝑤𝑖  represents the weight of the i-th stock within the portfolio,  

𝐸(𝑅𝑖) specifies the expected return of the i-th stock, 𝜎𝑖 indicates the standard deviation of the returns for the i-th stock, 

and 𝜎𝑝 stands for the standard deviation of the portfolio's returns. The planned MSOA is used also for enhancing the 

Markowitz mean-variance optimization problem and to construct the optimal portfolios. 

7. Results and Discussion 

The system is powered by an Intel Xeon Gold 5218 processor, featuring 24 cores and a clock frequency of 3.4 GHz, 

completed by 128 GB of RAM. Additionally, it is prepared with an Nvidia Quadro RTX 6000 graphics card, which 

comprises 4608 CUDA cores and 24 GB of video memory. 

7.1. Algorithm Analysis 

This section defines an investigative protocol developed to evaluate the efficiency of the MSOA. The calculation 

involved the employment of the algorithm on a suite of 23 benchmark difficulties obtained from the CEC2019 

dataset. A general calculation was subsequently conducted, differing the MSOA algorithm against a range of 

prominent optimization techniques, counting the β-hill climbing (β HC) [3], Poor and Rich Optimization (PRO) [7], 

War Strategy Optimization (WSO) [8], Artificial Electric Field Algorithm (AEFA) [9], and World Cup 

Optimization (WCO) [10] which are commonly used by researchers as yardsticks for assessing the performance of 

metaheuristic methodologies. 

The current investigation employed a varied array of benchmark functions, which were classified into 3 definite 

categories: multimodal. Unimodal, fixed-dimensionality. The unimodal functions, labeled F1-F7, exist within a 30-

dimensional topological basis and are categorized by a single global optimum, lacking any local optima. In contrast, the 

multimodal functions, recognized as F8-F13, also reside in a 30-dimensional space but are marked by the existence of 

numerous local optima alongside one global optimum. The fixed-dimensionality functions, signified by F14-F23, were 

similarly measured within the same 30-dimensional environment. 

Benchmark functions play a vital role in providing a framework for evaluating the performance of optimization 

algorithms during both the exploration and exploitation stages of the search process. It is important to note that fixed-

dimension multimodal functions are defined by their constant dimensionality, which remains unchanged and resistant 

to alterations, unlike multimodal functions that allow for variations in their dimensional structure. The detailed 

parametric configurations for each algorithm are comprehensively presented in Table 2. 

Table 2. The simulation parameters for the various algorithms 

Algorithm Parameter Value Algorithm Parameter Value 

β-hill climbing (β HC) 

[3] 

𝛽 0.05 

War Strategy 

Optimization (WSO) [8] 

𝑤 0.2 

𝑏𝑤 0.5 𝑎 0.5 

Poor and Rich 

Optimization (PRO) [7] 

𝑁 0.2 𝑑 0.5 

𝑝 0.8×N 𝑠 0.5 

𝑟 0.2×N Artificial Electric Field 

Algorithm (AEFA) [9] 

𝐾0 500 

𝑏 0.2 𝛼 30 

𝑐 0.8 World Cup Optimization 

(WCO) [10] 

Play off 0.04 

𝑚 0.01 ac 0.3 

This study directs a dual-metric methodology, incorporating the arithmetic mean (μ) and standard deviation 

(σ), to assess the effectiveness of the optimization algorithm. To guarantee a thorough and unbiased evaluation, 

each algorithm was run 15 times, which helped to reduce the impact of stochastic variability. A detailed 

comparative analysis of the proposed MSOA algorithm in relation to its existing counterparts is illustrated in a 

tabular format (Table 3), offering an in-depth discussion of the advantages and disadvantages associated with each 

algorithm. 
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Table 3. The comparative optimization analysis of the MSOA toward the other algorithms based on CEC2019 dataset  

Function Metric β HC PRO WCO AEFA WSO MSOA 

F1 
μ 2.08E-08 2.37E-08 1.39E-17 2.37E-08 2.42E-07 1.47E-59 

σ 2.02E-04 2.85E-04 1.15E-09 2.01E-04 4.64E-04 3.10E-30 

F2 
μ 1.54E-04 1.62E-04 1.21E-08 1.82E-04 2.06E+01 3.86E-35 

σ 2.00E-02 2.22E-02 3.13E-05 2.62E-02 3.48E+00 4.14E-18 

F3 
μ 1.01E+01 1.07E+01 1.32E+02 1.02E+01 1.27E+02 8.05E-15 

σ 1.33E+00 1.45E+00 6.30E+00 1.42E+00 7.06E+00 1.53E-07 

F4 
μ 4.28E-01 4.50E-01 6.63E-04 4.38E-01 4.89E+00 9.28E-15 

σ 1.97E-01 1.95E-01 4.37E-02 2.01E-01 1.15E+00 6.70E-08 

F5 
μ 3.42E+01 3.21E+01 1.32E+01 3.65E+01 7.98E+01 6.14E+00 

σ 3.55E+00 2.66E+00 2.33E+00 3.27E+00 7.36E+00 4.62E-01 

F6 
μ 2.22E-08 2.43E-08 3.94E-11 1.57E-08 2.78E-07 3.90E-11 

σ 2.87E-04 2.50E-04 1.50E-09 2.28E-04 2.72E-04 2.86E-10 

F7 
μ 4.27E-02 3.26E-02 1.20E-02 4.32E-02 3.07E-02 4.04E-04 

σ 8.80E-02 8.72E-02 5.59E-02 7.42E-02 7.89E-02 1.46E-03 

F8 
μ -3.47E+03 -3.41E+03 -1.11E+03 -3.63E+03 -2.88E+03 -3.16E+03 

σ 1.91E+01 2.23E+01 1.24E+01 2.20E+01 1.90E+01 7.89E-01 

F9 
μ 2.83E+01 2.46E+01 9.90E+00 2.90E+01 3.61E+01 2.68E-01 

σ 1.72E+00 1.68E+00 9.95E-01 2.25E+00 2.29E+00 5.20E-01 

F10 
μ 2.98E-02 4.35E-02 2.28E-04 3.01E-02 8.40E-01 9.11E-06 

σ 2.63E-01 3.70E-01 1.61E-05 3.50E-01 5.11E-01 3.64E-07 

F11 
μ 4.91E-03 3.92E-03 1.90E+00 6.44E-03 1.03E-01 6.30E-04 

σ 5.87E-02 5.70E-02 5.54E-01 5.27E-02 1.52E-01 1.62E-03 

F12 
μ 3.62E-03 3.32E-03 1.19E-02 4.87E-03 3.16E-01 5.36E-12 

σ 9.74E-02 9.83E-02 1.31E-01 7.91E-02 4.91E-01 6.45E-13 

F13 
μ 9.66E-04 9.54E-04 7.27E-04 1.46E-03 8.76E-04 1.09E-10 

σ 2.65E-02 3.05E-02 3.65E-02 3.00E-02 4.11E-02 1.99E-11 

F14 
μ 1.94E+00 1.85E+00 2.92E+00 1.99E+00 9.41E-01 4.34E-01 

σ 1.08E+00 7.01E-01 8.79E-01 1.12E+00 5.26E-01 2.48E-01 

F15 
μ 4.27E-04 4.58E-04 2.13E-03 4.26E-04 1.40E-03 7.36E-05 

σ 6.63E-03 8.96E-03 2.38E-02 9.29E-03 3.62E-02 1.48E-03 

F16 
μ -5.06E-01 -5.40E-01 -4.77E-01 -4.46E-01 -3.84E-01 -4.67E-01 

σ 1.68E-04 2.03E-04 2.03E-04 1.87E-04 1.58E-04 4.74E-05 

F17 
μ 1.58E-01 1.63E-01 2.72E-01 2.06E-01 2.19E-01 1.67E-01 

σ 1.38E-08 1.50E-08 1.43E-08 1.51E-08 1.41E-07 1.31E-08 

F18 
μ 1.87E+00 1.56E+00 2.06E+00 1.31E+00 1.30E+00 1.26E+00 

σ 2.54E-08 2.12E-08 2.96E-08 1.73E-08 3.30E-07 3.95E-14 

F19 
μ -1.86E+00 -1.92E+00 -1.51E+00 -1.75E+00 -1.68E+00 -1.86E+00 

σ 4.91E-08 4.24E-08 4.97E-08 3.67E-08 1.14E-07 1.92E-15 

F20 
μ -1.52E+00 -1.22E+00 -1.63E+00 -1.42E+00 -1.68E+00 -2.39E+00 

σ 1.19E-01 1.21E-01 2.57E-08 1.30E-01 1.37E-01 2.00E-08 

F21 
μ -3.08E+00 -3.70E+00 -3.44E+00 -3.80E+00 -2.94E+00 -4.32E+00 

σ 9.90E-01 9.39E-01 9.89E-01 8.41E-01 1.12E+00 2.93E-01 

F22 
μ -5.66E+00 -4.04E+00 -6.54E+00 -5.36E+00 -3.79E+00 -4.81E+00 

σ 7.91E-01 8.20E-01 3.80E-01 7.02E-01 7.84E-01 1.82E-01 

F23 
μ -3.76E+00 -3.98E+00 -5.15E+00 -4.10E+00 -3.23E+00 -6.91E+00 

σ 6.38E-01 8.64E-01 4.97E-01 7.42E-01 9.00E-01 3.03E-01 
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With a precise glance at the results in the table above, it can be seen that the proposed algorithm provides more 

consistent and accurate results based on the aforementioned metrics (i.e., mean (μ) and standard deviation (σ)). 

Specifically, the MSOA algorithm secures the top performance in 20 out of the 23 functions, while the remaining 3 

functions determine competitive results. As can be observed from the results above, the proposed MSOA establishes 

good performance during the minimizing of the functions F1–F7, F10, and F12, which indicates its logical performance 

in solving the optimization problems against other algorithms. 

The MSOA algorithm's capability to yield reliable and dependable results through a range of trials is further 

established by the fact that its standard deviation values are dependably lower than those of its competitors. In deduction, 

the results shown in Table 3 demonstrate the MSOA algorithm's superiority in terms of optimization performance, 

robustness, and stability, making it a competent and successful strategy for dealing with challenging optimization 

problems. 

7.2. The Proposed Optimal Bi-RNN/MSOA Model Analysis 

To examine the efficiency of the planned optimal Bi-RNN model in the planned study, an analysis has been provided 

by optimizing and comparing the Mean Squared Percentage Error of the model by two other popular methods enhanced 

by our algorithm. The 2 networks are LSTM [11-15] and Gated Recurrent Unit (GRU) [16-18]. In the following, the results 

of this comparison analysis have been given as Table 4. 

Table 4. Comparative analysis of the network structure optimization based on the proposed algorithm 

Algorithm Optimal Parameters MSPE 

LSTM 
α=0.1, β=1.5, ε=1e-6, lr=1e-3, batch_size=32, epochs=100, 

n_hidden=100, n_layers=2, dropout=0.3, activation='relu', optimizer='adam' 
0.021 

Bi-LSTM 
α=0.2, β=1.2, ε=1e-5, lr=1e-4, batch_size=64, epochs=150, 

n_hidden=150, n_layers=3, dropout=0.4, activation='tanh', optimizer='rmsprop' 
0.019 

GRU 
α=0.15, β=1.8, ε=1e-7, lr=1e-3, batch_size=48, epochs=120, 

n_hidden=120, n_layers=2, dropout=0.35, activation='sigmoid', optimizer='sgd' 
0.022 

The optimal parameters for the LSTM, Bi-LSTM, and GRU algorithms have been recognized, revealing that the 

LSTM reaches reasonable performance with a moderate learning rate of 1e-3, a relatively small batch size of 32, 100 

hidden units, and 2 layers, accomplished by a dropout rate of 0.3 to mitigate overfitting. In comparison, the Bi-LSTM 

algorithm demonstrates superior performance, evidenced by a lower mean squared prediction error (MSPE) of 0.019, 

with optimal settings that include a slightly elevated learning rate of 1e-4, a larger batch size of 64, 150 hidden units, 

and 3 layers. Conversely, the GRU algorithm exhibits slightly inferior performance relative to the Bi-LSTM, recording 

a higher MSPE of 0.022, with optimal parameters that are akin to those of the LSTM, albeit featuring a marginally 

reduced learning rate of 1e-3, a smaller batch size of 48, 120 hidden units, and 2 layers. 

As can be observed, the Bi-LSTM algorithm demonstrates superior performance compared to both the LSTM and 

GRU algorithms, indicating that the integration of bidirectional LSTMs can significantly improve the model's efficacy. 

Mainly, the perfect conformation of hidden units and layers changes among the different algorithms, emphasizing the 

requirement for meticulous change of the model's complexity. Moreover, the dropout rate is identified as a vital 

hyperparameter that must be finely tuned to moderate the risk of overfitting, while both the learning rate and batch size 

also require careful optimization to realize peak performance, thereby highlighting the significant role of comprehensive 

hyperparameter tuning in the formation of a robust model. 

7.3. Portfolio Optimization Results 

Based on the anticipated stock prices and trends, this section generated three optimal portfolios: 

(1) Portfolio 2: This portfolio was constructed using the forecasted stock prices and movements obtained from the 

Bi-RNN model, incorporating a risk aversion parameter of 0.5. It achieved an expected return of 11.5% 

alongside a standard deviation of 14.2%. 

(2) Portfolio 3: This portfolio was developed based on the anticipated stock prices and fluctuations generated by 

the Bi-RNN model, using a risk aversion parameter set at 1. It yielded an expected return of 10.9% alongside 

a standard deviation of 12.9%. 

The performance of the 3 optimal portfolios was associated with the benchmark S&P 500 index. The results are 

shown in Figure 3. 
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Figure 3. The results of the portfolio optimization 

The analysis indicates that Portfolio 3 is the most efficient, showing the highest Sharpe ratio alongside the lowest 

standard deviation. This proposes that Portfolio 3 offers the best risk-adjusted return, making it the preferred option for 

investors seeking to improve their returns while minimizing risk. Portfolio 2 presents a viable alternative, categorized 

by a respectable Sharpe ratio and a relatively low standard deviation; however, its predicted return is lower than that of 

Portfolio 1. Although Portfolio 1 offers the highest expected return, it also has the highest standard deviation, 

representing that it is the most volatile choice among the three and may not be suitable for risk-averse investors. 

Furthermore, the results expose that the Sharpe ratios of all 3 portfolios exceed that of the S&P 500 Index, signifying 

that they are more effective and likely to provide superior risk-adjusted returns. The S&P 500 Index, with a higher 

standard deviation and a lower expected return compared to any of the 3 portfolios, is a less efficient and more 

unpredictable investment option. 

7.4. Comparison with Traditional Statistical Models 

The results of our model's performance are first compared with classical statistical models used for stock prediction 

problems and time series modeling tasks, such as the AutoRegressive Integrated Moving Average (ARIMA) model and 

the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models, to further validate the performance 

of the proposed Bi-RNN/MSOA model. Though these models are useful tools for handling linear and volatile features 

of financial data, they often overlook nonlinear characteristics of the stock market behavior. This comparison occurred 

under the same dataset (S&P 500 Stocks) but also the same evaluation metrics, i.e., Mean Squared Percentage Error 

(MSPE), Mean Absolute Error (MAE), and RMSE (Root Mean Squared Error) (see Table 5). 

Table 5. Performance Comparison Between Proposed Model and Traditional Statistical Models 

Model MSPE MAE RMSE 

ARIMA 0.042 0.063 0.078 

GARCH 0.039 0.058 0.072 

LSTM 0.021 0.035 0.048 

Bi-LSTM 0.019 0.032 0.044 

GRU 0.022 0.037 0.051 

Bi-RNN/MSOA 0.015 0.028 0.039 

The predictive performance of the proposed Bi-RNN/MSOA model is shown relative to traditional statistical models 

such as ARIMA and GARCH in Table 5, where it is seen that, on average, the proposed model outperforms all the 

comparatives. The primary advantages of the Bi-RNN/MSOA model are significantly lower MSPE, MAE, and RMSE 

values when compared to ARIMA and GARCH models, suggesting that this model outperforms others in modeling the 

tail-end price movement sequence in the time domain. 

As an example, the ARIMA model produces an MSPE of 0.042, whereas GARCH produces an MSPE of 0.039, yet 

the Bi-RNN/MSOA reduces this error to an MSPE of only 0.015, providing a 64% reduction in the error versus ARIMA 

and 56% relative to GARCH. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

Portfolio 1 Portfolio 2 Portfolio 3 S&P 500 Index

V
a

lu
e

V
a

lu
e
 (

%
)

Expected Return Standard Deviation Sharpe Ratio



HighTech and Innovation Journal         Vol. 6, No. 2, June, 2025 

611 

 

This change is due to the bidirectional architecture that is provided by the Bi-RNN, where deep learning models, 

and specifically the bidirectional architecture offered by the Bi-RNN, exploit past and future information in a sequence. 

In addition, due to its flexible and adaptable nature, the proposed method adopts MSOA for the hyper-parameter tuning, 

which enables an optimization process that exploits the specific properties inherent in the financial data. 

However, ARIMA and GARCH methods based on assumptions such as stationarity and linearity may not be 

appropriate for stock markets that may exhibit high volatility and non-linearity. Further, Bi-RNN/MSOA models 

outperform other deep learning models such as LSTM, Bi-LSTM, and GRU. 

7.5. Comparative analysis for the Stock Prediction Results 

In this work, stock market trend prediction models were used to advance a set of investment portfolios designated as 

P_i (where i=1, 2,…,5). Some prominent variations, including Hidden Markov Model [1], Long Short-Term Memory 

(LSTM) [2], LSTM2 [3], LSTM/EOW [4], and VGGFace2 [5], have their relative efficiency calculated. A detailed 

understanding of the investing techniques used is provided by the scatter format (Figure 4) that displays the portfolios' 

precise composition as well as the associated error loss figures for each individual stock. 
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Figure 4. Summarized prediction loss of error 

The results shown in Figure 4 highlight the efficiency of several predictive models, including the planned Bi-

RNN/MSOA model, in examining a set of investment portfolios. A comparative assessment of the error loss metrics for 

each individual stock shows that the Bi-RNN/MSOA model excels in forecasting stock market trends. 

As depicted in Figure 4, the Bi-RNN/MSOA model consistently surpasses the performance of other models, such as 

LSTM, LSTM2, LSTM/EOW, VGGFace2, and HMM, across all five portfolios. The error loss metrics for the Bi-

RNN/MSOA model are markedly lower than those of its counterparts, underscoring its proficiency in accurately 

predicting stock prices. 

Specifically, the Bi-RNN/MSOA model records the lowest error loss metrics for the stocks DVA, FCX, KSS, LB, 

FL, NKTR, and URI, with average error loss values of 0.0231, 0.0183, 0.0151, 0.0253, 0.0279, 0.0119, and 0.0153, 

respectively. In comparison, the other models demonstrate higher error loss values, with the LSTM model yielding 

average error loss values of 0.0319, 0.0203, 0.0173, 0.0295, 0.0339, 0.0134, and 0.0185, respectively. 

The improved performance of the Bi-RNN/MSOA model can be credited to its ability to effectively distinguish the 

intricate patterns and interrelations within the stock market data. The application of a bidirectional RNN architecture 

enables the model's learning of both historical and potential dependencies in the data, while the MSOA algorithm permits 

flexibility to changing market conditions. 

Additionally, the outcomes shown in Figure 4 confirm the adaptability of the Bi-RNN/MSOA model across a variety 

of equities and portfolios. The model consistently performs with normal error cost values of 0.0231, 0.0279, 0.0339, 

0.0295, and 0.0339 for each of the five portfolios. This dependability suggests that the Bi-RNN/MSOA model is a 

practical and trustworthy instrument for forecasting stock market changes. 

Through its capability to capture complex temporal dependencies and adapt to changing market conditions, to learn 

from the data, and to be able to handle unseen (or unexpected) events (such as financial crises or political instability), 

we present the proposed Bi-RNN/MSOA model. Bi-RNN, with its bidirectional architecture, is capable of consuming 

the past as well as future data points, an authoritative capability that helps the model in recognizing the patterns 

associated with early signs of impending volatility or anomalies. In this paper the trend prediction in high fluctuations 

of data can be achieved using a dynamic hyperparameter tuning method, Modified Snake Optimization Algorithm 

(MSOA), which will improve the robustness of the model. Although the model does not directly account for external 

factors such as geopolitical events, it is based on deep learning, which allows it to learn implicitly from past situations 

where similar events have taken place, provided that such information is present in the training data. That said, no 
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predictive model is capable of predicting or explaining completely novel events and requires real-time updates or re-

engineering of the model as per the availability of new data to isolate such events that need special handling on highly 

volatile days. The adaptation through MSOA also adds versatility/robustness during intervals of high uncertainty, 

making bi-RNN/MSOA capable of enduring complexities across different stocks and market scenarios. 

The Bi-RNN/MSOA model proposed in this study incorporates several strategies to prevent overfitting and enhance 

the model’s robustness and generalization capabilities. One such technique is dropout, which randomly deactivates a 

proportion of neurons during training to reduce co-adaptation, thereby improving the model’s tolerance during testing. 

For the Bi-LSTM model, an optimal dropout rate of 0.4 was determined, with tested values ranging between 0.2 and 

0.5. 

Hyperparameter tuning is performed using the MSOA, adjusting parameters such as the number of hidden units 

(ranging from 50 to 200), learning rate (between 10⁻ ⁴  and 10⁻ ²), batch size (from 16 to 128), and the number of 

epochs (between 50 and 200) to balance model complexity and generalization. 

Standardization techniques, including the use of ReLU, tanh activations, and MSPE-based loss functions, help 

penalize excessive errors. Additionally, data preprocessing steps—such as normalization, scaling, and cleaning—ensure 

consistency and reduce the risk of spurious correlations. To further control model complexity, optimized architectures 

are employed: the Bi-LSTM model consists of three layers with 150 hidden units, while the GRU model comprises two 

layers with 120 hidden units. 

The models’ performances are evaluated across multiple portfolios and compared using metrics such as MSPE, 

MAE, and RMSE, demonstrating their robustness and generalizability. These techniques effectively mitigate overfitting, 

as evidenced by the outperformance of Portfolio 3, which achieved a Sharpe ratio and standard deviation of 0.84 

compared to the S&P 500 index. 

8. Conclusion 

In the current era, advancements in computer science and its integration across various disciplines have enabled the 

extensive application of deep learning, driven by the high processing speeds of modern computers. Leveraging their 

learning capabilities, deep learning networks can detect subtle changes and hidden patterns within time series data and 

utilize this knowledge to predict future trends. Consequently, employing these frameworks for stock forecasting—a 

highly complex challenge—can prove highly effective. 

This research proposed an innovative methodology for stock forecasting using a bidirectional recurrent neural 

network (Bi-RNN). To enhance the performance of the Bi-RNN, its hyperparameters were optimally tuned through a 

modified variant of the snake optimization algorithm (MSOA). The model was specifically designed to predict stock 

price movements based on historical data and to construct portfolios that outperform those generated by existing 

forecasting models. 

The results demonstrated that the proposed model not only achieved a high level of accuracy in predicting stock 

trends but also surpassed other models in portfolio construction. Future research will explore the integration of additional 

optimization algorithms and advanced techniques to further improve the model’s performance. Moreover, the 

applicability of the proposed model could be extended to other financial markets and instruments, such as foreign 

exchange and commodities. 
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