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Abstract

This paper presents an improved K-means clustering algorithm that addresses the traditional algorithm’s sensitivity to
outlier and susceptibility to local optima by introducing an adaptive weight adjustment mechanism. It employs an
exponential decay function to dynamically reduce the feature weights of outlier data points, effectively suppressing outliers
while preserving the structure of the normal data. The proposed method retains the computational efficiency of standard
K-means. Key contributions include: (a) A novel distance-based weighting strategy that progressively reduces the influence
of noisy points, mitigating the impact of outliers on clustering performance. (b) An innovative form of "local dimensionality
reduction™ for outlier points via weight decay, which interferes only with the feature space of noisy regions while
preserving the global topological structure of clean data. Extensive experiments on three benchmark datasets Iris (4-
dimensional, balanced classes), Wine (13-dimensional, correlated features), and Wisconsin Breast Cancer Diagnosis (30-
dimensional, imbalanced data) demonstrate the effectiveness of the approach. Compared to standard K-means, the
proposed algorithm achieves accuracy improvements of 7.47% on Iris, 13.89% on Wine, and 19% on WBCD. This adaptive
strategy offers a practical and efficient solution for clustering in noisy, high-dimensional environments, without the added
complexity of mixture models.

Keywords: K-Means Classification; Adaptive Weights; Classification; Machine Learning.

1. Introduction

Clustering algorithms are fundamental tools in data mining, with applications ranging from customer
segmentation to bioinformatics. Among them, the K-means algorithm is widely used due to its simplicity and
efficiency [1]. In machine learning algorithms, these attributes are called features, and classification decisions are
usually based on distance metrics in a spatial coordinate system [2]. Currently, K-means plays a central role in the
field of data mining [3]. In addition, K-means has been widely used in various industries such as pharmaceuticals,
manufacturing, robotics, and finance [4]. Machine learning aims to extract valuable potential information from
existing datasets to predict future trends [5-10]. The K-means algorithm is very widely used in practical applications,
it also has some obvious limitations, especially when dealing with datasets containing outliers or outliers. Since K-
means relies on randomly initialized cluster centers and assigns data points based on minimizing the Euclidean
distance, it tends to converge to local minima [11, 12]. In addition, the algorithm is highly sensitive to initial
conditions, often resulting in overlapping clusters or blurred boundaries, which intensifies the impact of outliers and
outliers on the final clustering results [13].
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Although studies have attempted to improve the robustness of K-means by pausing, optimizing initialization methods,
or introducing other heuristic algorithms, a core challenge has been fully addressed: how to dynamically adapt to the
distribution of noise and outliers in the data. Most existing methods deal with noise statically or based on statics, such
as using cleaning filters or dimensionality reduction techniques. However, these methods often fail or are inefficient
when dealing with high-dimensional, dynamic, or unstructured data sets.

This study aims to introduce adaptive weighting mechanisms to dynamically adjust the importance of data points in
alarms based on their distance from the cluster center. This method assigns more weight to the point distant from the
cluster centre, effectively reducing the influence of noise and outliers on the overall centre. Related studies have shown
that this method can effectively improve the accuracy and stability [14, 15]. To verify the effectiveness of this
mechanism, we further compared and analyzed the current mainstream K-means improved algorithms, such as LBKC
[16], SKM-AGR [17], OWAK-Means [18], KMF [19], and HCSA [20]. Although these methods have their own
advantages, they have not yet achieved effective integration in terms of noise processing and adaptability. Therefore, the
algorithm proposed in this paper, as an integrated hybrid model, will integrate the advantages of multiple algorithms on
the basis of maintaining the core structure of K-means to adapt to the needs of different types of data. In addition, this
paper will use statistical indicators such as rainbow and standard deviation to evaluate the classification model results to
quantify the performance of the model under different data noise levels.

The structure of this paper is as follows: Section 2 reviews K-means and its improved algorithms and noise processing
methods; Section 3 introduces the proposed adaptive weighted gain mechanism and its mathematical principles; Section
4 proposes experimental settings and benchmark datasets; Section 5 presents experimental results and compares them
with traditional K-means; Section 6 summarizes the full paper and discusses future research directions.

2. Relative Works

Clustering algorithms, with a particular emphasis on k-means, have garnered significant attention and application in
various fields. In this section, we explore several notable recent studies in the realm of clustering methods and related
classification approaches.

Traditional clustering methods often assign equal weight to all features in high-dimensional data, making them
sensitive to noise and irrelevant variables. They also struggle with uncertainty, fuzzy boundaries, overlapping
clusters, and outliers. To address these issues, recent studies have introduced feature weighting and adaptive
mechanisms [21]. This paper proposes an adaptive K-means method that dynamically determines the number of
clusters based on data characteristics, enabling effective under-sampling for class imbalance [22]. While some
methods enhance robustness to outliers or perform feature selection [23], few can address both simultaneously.
Improved K-means via adaptive guided differential evolution (AGDE-KM), optimizing initial centers for better
performance [24]. Other approaches use perceptions to build decision boundaries, reducing the need for frequent
distance calculations [25].

Recently Research pointed out in their latest paper that the reason for the poor performance of the K-means
algorithm is that the algorithm has difficulty in discovering the size and density of clusters. To solve this problem,
they proposed a new multi-view K-means clustering method. Using fuzzy K-means, the new approach learns a
bipartite connection probability matrix for each view and constructs a unified structured connection probability
matrix that aligns closely with these view-based matrices [26]. It is as artificial intelligence continues to empower
various fields of social development. Believe that the clustering of large-scale data sets has become important, but
its performance still needs to be improved due to factors such as existing technologies. This study mainly studies
the linear relationship between the algorithm's computational time, memory size overhead, and the number of
samples [27].

Some others believe that to solve the problem clustering requires manually setting the k value. Proposed a clustering
algorithm that automatically finds the k value [28]. The algorithm combines the following four algorithms: 1. Noise
algorithm, 2. Genetic algorithm (GA), 3. Ant colony optimization (ACO), 4. Adaptive fuzzy system (AFS). In their
paper, compared the performance of three clustering algorithms, namely: 1. Kernel Fuzzy C-Means (KFCM), 2. K-
Means (KM), 3. Fuzzy C-Means (FCM). The experimental results show that the KFCM algorithm has a significant
improvement in noise enhancement and recognition of speech signals [29]. The application of the k-means algorithm in
financial fraud detection, can effectively identify abnormal patterns and behaviors and is safer than traditional detection
methods [30].

There are more research shows that to solve decreasing performance problems for classification Models caused
by a class imbalance in data since the k-means needs to preset a k value to determine the number of clusters [31].
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Reviewed variants of the k-means and identified new challenges emerging in the big data era. Their research
highlighted that the predominant focus of the classification Model lies in addressing algorithm initialization problems
[4]. Highlighted the issue of slow convergence in clustering performance attributed to the utilization of random seeds
as initial centroids in clustering. They introduced a remedy by employing fixed centroids as the initial clustering
centers, termed FC-Means [32].

And finally, Proposed a segmentation technique to solve the overlapping problem of clustering. A centroid is placed
at the center of the overlapping area as a new cluster, and then the data of this cluster is segmented, and finally, the neural
network algorithm is integrated for classification. This is an effective solution for some data sets that are difficult to
classify effectively [33].

However, most existing studies have shown that they seek better classification performance by integrating other
algorithms, but this will increase the space complexity and time complexity. In the end, the model becomes very bloated
and takes longer to calculate. In summary, we summarize the most effective classification algorithms currently as
follows: Partition clustering [34, 35], Hierarchical clustering [36], Density clustering [37].

These studies have promoted the continuous updating and improvement of the K-means clustering algorithm. The
current research mainly focuses on the problems of unclear clustering boundaries, optimal parameter selection, high-
dimensional data, etc. Unlike previous studies, we focus more on optimizing the algorithm to improve its performance.
This paper proposes a new algorithm to solve the problem of f outlier data classification. It is shown in Figure 1. Unlike
the model method of the hybrid algorithm, our new solution is easier to understand and implement. In this study, we
propose to add a dimension variable (weight) to improve the classification model. The newly added variable is used to
change the similarity of the noise, thereby improving the accuracy of the classification model. The variable is an
initialization parameter that must be defined before the model is run. In the following sections, we will outline the
parameter setting of the new algorithm and evaluate model classification performance.

Handing of
Data Input Kmeans Model
Error Samples

Adjusting
Weights
e ™
Model Model Model
Integration Training Validation
_ /

Figure 1. Research workflow of the proposed model

Contribution of this study:
1. Adaptive Weight Mechanism

A distance measurement method for dynamically adjusting the weight of outlier points is proposed. Through the
exponential decay formula (Equation 2), the progressive weight reduction of outlier points is achieved, which solves the
problem of traditional K-means being sensitive outliers and noise.

2. Local Dimension Compression

Innovatively "locally reduce the dimension" of outlier points through weight decay, only disturbing the feature space
of the outlier area and retaining the topological structure of normal data.
3. Research Methodology

This section explains the structure of our proposed model, outlier handling, model integration, and Parameter Setting
and Performance Validation.
3.1. Proposed Hybrid Model Structure

The traditional K-means algorithm is enhanced by introducing an adaptive weight mechanism to handle noise and
outliers. The key steps are as follows (see Figure 2):
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Figure 2. Workflow for the proposed model

1. Initialization:
o Randomly select K initial cluster centroids.

o Initialize weights w;=1 for all dimensions.

2. Distance Calculation:

The modified Euclidean distance between a data point p and centroid q is defined as:

d(p,q) = Y, ?:1(%‘ —pi)*w;

3. Cluster Assignment:

o Assign each data point to the nearest cluster based on the weighted distance.
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4. Centroid Update:

o Recompute centroids as the mean of all points in each cluster.

5. Outlier Handling:
o ldentify outlier points as those misclassified or with distances exceeding a threshold 6.

Adjust weights for outlier points iteratively:

Wi(t+1) =qa- Wi(t) (2)

where a is the learning rate, which controls the speed of weight decay.

6. Termination:

o Repeat until centroids stabilize or a maximum number of iterations is reached.

3.2. How the Adaptive Weight Mechanism Works

In this section, we detail our proposed outlier dimensionality reduction technique aimed at resolving outlier
challenges in classification problems. The new variable is used to reclassify the outlier. Our approach outlines this
approach and describes how to implement it, as shown in Figure 3.

Horizontal axis Horizontal axis
A Noise A Noise
2 - ] seamT
g A AT g A AT
= 4 S A F
8 Ya 3 AN
15:3 A e A ES) ,"' FANIC) A
; K A'" ; K A”l
! A A B I‘; A A I,'
) e ' v -
\:A___, - A Data é - A Data
---- Cluster ---- Cluster
(a) Applied dynamically (b) Applied globally

Figure 3. How the adaptive weight mechanism works

The adaptive weight mechanism adjusts the distance of outlier points so that they can be correctly classified. The key
points include:
1. Dynamic weight adjustment (Figure 3-a):

o Weight adjustment is only performed on outlier points to avoid affecting the clustering structure of normal data
points.

o Global weight adjustment (Figure 3-b) will cause the distance of all data points to change synchronously, and it is
impossible to optimize the classification of outlier points in a targeted manner.
2. Dimension reduction effect of outlier points (Table 1):

o Through weight adjustment, the distance of outlier points in multidimensional space is "compressed”, which is
equivalent to local dimensionality reduction.

o Compared with feature space transformation, weighted methods act more directly on outlier points and retain the
stability of normal data.
3. Outlier point judgment criteria:

If the current classification of a data point does not match its true label, it is judged as an outlierpoint. As shown in
Figure 3-a, the dynamic weight adjustment targets outlier points only, while Table 1 contrasts this approach with feature
space transformation methods.
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Table 1. Transformation of feature space or a Weighting of features

Dimensions Feature space transformation Weighting of features

Origin Determinism Preset Iterative Update

Generation Direction Center — Outward Dimension Data — Inward Center

Dynamic Static Structure Dynamic Optimization

Dimensionality Reduction of outlier point Reduce feature degradation noise points Weights reduce data outlier points

3.3. Parameter Setting and Performance Validation

This section details the general parameter settings of the classification model and the formulas for evaluating model
performance. To evaluate the performance of the proposed algorithm, the experiments have been conducted using
Performance measurement functions. The parameter settings of the model are shown in Table 2.

TN+TP

Accuracy = (m) x 100 o
Precison = —— (4)
TP +FP
Recall = —= ¢
TP + FN
F1 —score = 2 X (WL"XR“Q”) 0
Precision+Recall
= |Eeimw?
w \/T (7
1 —_
MD = 3 ¥iqlx; — %] (8)

The effectiveness of all tested models was assessed using key metrics, including accuracy, precision, recall, and F1-
score [38, 39]. TP represents the accurate identification of anomaly instances, TN denotes the correct detection of normal
instances, FP indicates the misclassification of anomalies, and FN reflects the failure to identify normal instances [40,
41].

1. New Parameters:
o The improved version adds weights w; , learning rate a, and noise threshold @ to optimize outliers handling.
o Traditional K-means lacks weight mechanisms and is sensitive to noise and outliers.
2. Compatibility:
o The improved version retains traditional parameters for seamless integration.
3. Experimental Setup:
o Learning rate a=0.1, noise threshold 6 dynamically calculated.
o Weight adjustment frequency: Updated per iteration for outliers’ points.

The following is a table of K-means algorithm parameter configurations, covering the key parameters of traditional
K-means and the adaptive weighted improved version proposed in the paper, with a comparison explanation as Table 2.

Table 2. General Parameters Settings of Classification Model

Traditional K- Adaptive Weighted means i
Parameter Description
means (Improved)
. Determines the final number of clusters, typically selected empirically or
Number of Clusters (K) Predefined Same as left via evaluation metrics.
Initial Centroids Random Same as left The |mp_r0ved algorithm retains traditional initialization to avoid added
complexity.
Max Iterations Default: 300 Same as left Prevents infinite iteration, usually used with a convergence threshold.
Convergence Tolerance (tol) Default: 1e-4 Same as left Stops iteration if centroid movement is smaller than this value.

Distance Metric

Euclidean (default)

Weighted Euclidean Distance

The improved algorithm adjusts outlier point distances via weights.

All dimensions start with weight 1; only outlier points are dynamically

Weight Initialization N/A Initial value: 1.0 adjusted.
Learning Rate N/A Default: 0.1 (adjustable) Controls the decay speed of outlier point weights
Noise Threshold N/A 1.5 x average intra-cluster distance Ie:)xlztea;r;ceedthreshold to identify outlier points; triggers weight adjustment if
Adjustment Frequency N/A Update weights every 10 iterations Avoids excessive adjustments that could destabilize results.
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The improved version enhances robustness through four new parameters (weight, learning rate, outlier threshold,
adjustment frequency). The remaining parameters are consistent with traditional K-means, balancing performance and
ease of use. In practical applications, @ and 8 need to be adjusted according to data characteristics.

3.4. Specific Public Datasets Used in This Study

This study used a specific public dataset from UCI Machine Learning Repository [42]. To verify its generality, we
tried to use a more diverse or noisier dataset. The following shows the details of the dataset used in the experiment.
Figure 4 shows the dataset scatter plot. Tables 3 and 4 show the detailed properties of the dataset.
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Figure 4. Scatter plots of datasets used in the experiments
Table 3. Datasets details
Dataset ~ Attributes  Class Numbers Samples Tasks Subject Mission
Iris 4 3 150 [50, 50, 50] Classicization Biology No
Wine 13 3 178 [59, 71, 48] Classicization Physics & Chemistry No
WBCD 30 2 569 [212, 357] Classicization Health and Medicine No
Table 4. Datasets characteristics
Dataset Iris Wine Breast Cancer (Diagnostic)
Feature Type Continuous Continuous Continuous
Noise level Low Medium High
Missing Values None None None

Length: 5.84 + 0.83

Feature mean range .
Width: 1.20 £ 0.76

Category distribution Balanced (50 per class)

Main Challenges Linear Separability

Alcohol: 13.0 £0.8
Flavonoids: 2.03 + 1.07

Slightly Imbalanced [59, 71, 48]

High Feature Correlation

Radius Mean: 14.13 + 3.52
Texture Mean: 19.29 + 4.30

Imbalanced (212 Malignant, 357 Benign)

Dimensionality + Class Imbalance
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3.5. Evaluate Model Performance and Stability

k-fold cross-validation is a commonly used model evaluation method, mainly used to improve the evaluation
accuracy of model generalization ability. 5-fold cross-validation process shown in Figure 5.

Iteration #1 lteration #2 lteration #3 Iteration #4 Ilteration #5

Model #1 Testing Tra+ing > Perf #1)

Model #2 | Training Training > Perf #2

Model #3 | T'raining | Training Tra%‘m‘ng > Perf #3 -
Model #4 | Training | Training | Training M—) Perf #4
Model #5 Training | Training | Training | Training m—) Perf #5)

Average Performance <

HI

Figure 5. K-fold cross-validation

To evaluate the classification model, the k-fold cross-validation technique was employed [43, 44]. The dataset is split
into 5 subsets, where each subset is used once as the test set while the others form the training set. This procedure is
repeated k times, and the final performance is derived from the average results (Equation 9). Figure 6 demonstrates the

k-fold cross-validation process.

Actual Lable Actual Lable
1.0 1.0
o 0 o 0
100.00% 0.8 100.00% 0.00% 0.8
g <
G 0.6 G 0.6
— -
k-] ° 0
g £~ 0.00%
u Y
E r0.4 g r0.4
o o
4 r0.2 | 0 1 r0.2
o~ 40.00% 80.00% ~ 0.00% 10.00% 90.00%
T T — 0.0 T T — 0.0
0 1 2 0 1 2
K-Means Model(4-Dimensions) Proposed Model(4-Dimensions)

Figure 6. Confusion matrix showing our model accuracy in comparison with K-Means model (4-Dimensional Iris dataset)
The k-fold validation error (k=5) is calculated as:

E=1¥V M, 9)

N &i=1

where N is the number of cross-validation folds, M;is Performance metrics for the i-fold cross validation, and E is The
average of all fold evaluation indicators is used as the final performance of the model.

The computer hardware used in this experiment is Windows 10 Education, version 22H2, Intel(R) Core (TM) (i7-
6700 CPU) (3.40GHz,3.41 GHz), (64-bit) computer operating system, (x64-based processor), and memory is 16.0 GB.
The software used is version 3.9.12 and version 4.13.0 in Python and Anaconda. The details of the computer performance

are shown in Table 5.
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Table 5. The computer performance in the experimental environment

Operating system Central Processing Unit Processor Random-Access Memory Python Anaconda
- . Intel(R) Core (TM 64-bit
Windows 10 Education, (i7(-6)700 CP(U) ) o era(ltin s )stem Random-Access Memory Version Version
version 22H2, perating system, (16.0 GB) 3.9.12 4130

(3.40GHz, 3.41 GHz) (x64-based) processor

4. Experiment Results and Discussion

This section introduces the performance results of the models. The detailed performance comparison of our proposed
model are shows by Figures 7 and 8.
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Figure 7. Confusion matrix showing our model accuracy in comparison with K-Means model (13-Dimensional Wine dataset)
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Figure 8. Confusion matrix showing our model accuracy in comparison with K-Means model (30 Dimensional WBCD dataset)

We compare the TDABC variant [45] as a baseline method for clustering stability, as shown in Tables 6 to 8. We
also show the running time required for the models to achieve the same CPU performance in Tables 9 to 11.

Table 6. Performance comparison on Iris dataset

Model(iris) Accuracy Precision Recall F1-Score S.D Mean
K-MEANS 0.8666 0.866 0.866 0.866 0.8808 0.0584
TDABC- A [45] 0.9610 0.960 0.927 0.943 N/A N/A
TDABC-M [45] 0.9200 0.917 0.859 0.883 N/A N/A
TDABC-R [45] 0.9360 0.934 0.885 0.906 N/A N/A
wk-NN [45] 0.9770 0.976 0.957 0.966 N/A N/A
k-NN [45] 0.9800 0.979 0.962 0.970 N/A N/A

PROPOSED 0.9413 0.934 0.936 0.931 0.8760 0.0517
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Table 7. Performance comparison on Wine data

Model(wine) Accuracy Precision Recall F1-Score S.D Mean

K-MEANS 0.6666 0.677 0.662 0.667 0.7059 0.0998
TDABC- A [45] 0.7690 0.765 0.622 0.683 N/A N/A
TDABC-M [45] 0.7670 0.763 0.619 0.680 N/A N/A
TDABC-R [45] 0.7680 0.764 0.621 0.684 N/A N/A
wk-NN [45] 0.7390 0.762 0.590 0.648 N/A N/A
k-NN [45] 0.7080 0.761 0.547 0.608 N/A N/A

PROPOSED 0.8055 0.816 0.810 0.811 0.6890 0.0817

Table 8. Performance comparison on WBCD data

Model (WBCD) Accuracy Precision Recall F1-Score S.D Mean

K-MEANS 0.74 0.72 0.63 0.69 0.7662 0.0406
TDABC- A [45] 0.91 0.91 0.90 0.91 N/A N/A
TDABC-M [45] 0.92 0.92 0.91 0.91 N/A N/A
TDABC-R [45] 0.92 0.92 0.91 0.91 N/A N/A
wk-NN [45] 0.93 0.92 0.93 0.93 N/A N/A
k-NN [45] 0.93 0.92 0.93 0.93 N/A N/A

PROPOSED 0.93 0.92 0.93 0.81 0.8137 0.0356

Figures 9 to 11show the classification accuracy comparison of different algorithms on three benchmark datasets (Iris,
Wine, and Wisconsin Breast Cancer Diagnosis (WBCD)). Figure 9 shows that all methods perform nearly perfectly on
the Iris dataset (0.92-0.98), with the proposed method achieving an accuracy of 0.94. Figure 10: shows the consistent
results on the Wine dataset, where the proposed method remains competitive (0.81) compared to other algorithms (range:
0.71-0.77). Figure 11: shows that the proposed method achieves excellent performance (accuracy 0.93) in breast cancer
detection compared to the baseline methods.

1.0
0 0.94

0.8 4
0.6
0.4 4
0.2 4
- Iris
0.0 T

K- Means TDABC-A TDABC-M TDABC-R  wk-NN k- NN Proposed

Accuracy-5cores

Figure 9. The bar chart showing the model accuracy in comparison with other classification models (4-Dimensional Iris dataset)
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Figure 10. The bar chart showing the model accuracy in comparison with other classification models (13-Dimensional Wine dataset)

0.93
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1

o
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Figure 11. The bar chart showing the model accuracy in comparison with other classification models (30 Dimensional WBCD dataset)

In summary, these results demonstrate the robustness of the proposed approach across a variety of classification tasks,
especially in complex medical diagnosis (WBCD), while maintaining competitive performance on simpler datasets. The
ranking patterns of our proposed models show systematic algorithmic improvements on all three datasets (4D, 13D,
30D).

Table 6: Intuitively shows the classification results of our model and other similar models in the same dataset (Iris).
In order to understand the model performance in detail, we compared the four evaluation indicators of Accuracy,
Precision, Recall and F1-Score. The prediction accuracy of our model is 0.94, while the other models K-MEANS,
TDABC-A, TDABC-M, TDABC-R, wk-NN, k-NN are 0.86, 0.96, 0.92, 0.93, 0.97, 0.98 respectively. Our model
performance ranks third, only behind wk-NN and k-NN.

Table 7: Intuitively shows the classification results of our model and other similar models in the same dataset (Wine).
In order to understand the model performance in detail, we compared the four evaluation indicators of Accuracy,

Precision, Recall and F1-Score. The prediction accuracy of our model is 0.80, while the other models K-MEANS,
TDABC-A, TDABC-M, TDABC-R, wk-NN, k-NN are 0.66, 0.76, 0.76, 0.76, 0.73, 0.70 respectively. Our model has

the best performance.
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Table 8: Intuitively shows the classification results of our model and other similar models in the same dataset
(WBCD). In order to understand the model performance in detail, we compared the four evaluation indicators of
Accuracy, Precision, Recall and F1-Score. The prediction accuracy of our model is: 0.93, while the other models K-
MEANS, TDABC-A, TDABC-M, TDABC-R, wk-NN, k-NN are: 0.74, 0.91, 0.92, 0.92, 0.93, 0.93 respectively. The
performance of our model is the best compared with that of wk-NN and k-NN models.

Figures 6 to 8: Visually show the distribution of model predictions (our model and K-means). The evaluation relies
on four standard metrics: true positives, true negatives, false positives, and false negatives. The confusion matrix is based
on the comparison of model predictions with actual results.

Tables 9 to 11 show the CPU training time of the models. Among them, (Iris) has an average model training time of
1.44E+01, a minimum training time of 1.38E+01, a maximum training time of 1.57E+01, and a total training time of
7.18E+01. (Wine) has an average model training time of 1.81E+01, a minimum training time of 1.66E+01, a maximum
training time of 2.34E+01, and a total training time of 9.18E+01. (WBCD) The average model training time is 2.14E+01,
the shortest training time is 1.84E+01, the longest training time is 2.57E+01, and the total training time is 13.18E+01

Table 9. CPU time required to run the Iris dataset

CPU (Iris) Training Cost ~ Average -training  Min-Training Max-Training Total

Intel(R) Core (TM) i7-6700 CPU @ 3.40GHz 3.41 GHz Low-Cost 1.44E+01 1.38E+01 1.57E+01 7.18E+01

Table 10. CPU time required to run the Wine dataset

CPU (Wine) Training Cost ~ Average -training  Min-Training Max-Training Total

Intel(R) Core (TM) i7-6700 CPU @ 3.40GHz 3.41 GHz Low-Cost 1.81E+01 1.66E+01 2.34E+01 9.18E+01

Table 11. CPU time required to run the WBCD dataset

CPU (WBCD) Training Cost ~ Average -training  Min-Training Max-Training Total

Intel(R) Core (TM) i7-6700 CPU @ 3.40GHz 3.41 GHz Low-Cost 2.14E+01 1.84E+01 2.57E+01 13.18E+01

5. Conclusion

This study improves the K-means classification algorithm. The improved algorithm can spatially fold the outlier
points in the cluster, shorten their distance from the straight-line points in the cluster, effectively reduce the dimension
of the outlier points, and make them enter the correct cluster.

The experimental data comparison analysis is divided into indicators such as accuracy, precision, recall, and F1 index.
A comprehensive summary of accuracy, precision, recall, and F1 index is made, and the performance of the model is
evaluated in detail. In addition, in order to evaluate the proposed model, we conducted experiments using 4-, 13-, and
30-dimensional data sets. For the Iris dataset, when compared with the original K-means classification model, the
performance of the improved model is improved by an average of 7.47%. Compared with other classification models,
our model performs better than K-MEANS, TDABC-A, TDABC-M, and TDABC-R on the Iris data set and is close to
the performance of wk-NN and k-NN. For the Wine dataset, when compared with the original K-means classification
model, the performance of the improved model is improved by an average of 13.89%. Compared with other classification
models, our model outperforms TDABC-A, TDABC-M, TDABC-R, wk-NN, and k-NN on the wine dataset. For the
WBCD dataset, when compared with the original K-means classification model, the performance of the improved model
is improved by 19% on average. Compared with other classification models, our model outperforms TDABC-A and
TDABC-M on the Wine dataset and performs comparably to TDABC-R, wk-NN, and k-NN models.

In summary, we evaluated the performance of other models on public datasets. The experimental results demonstrate
the effectiveness of our proposed method. In summary, we evaluated the performance of other models on public datasets.
The experimental results demonstrate the effectiveness of our proposed method.
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