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Abstract

Advancements in computational modeling and optimization algorithms have opened new possibilities for analyzing and
improving sports biomechanics. This study presents a multi-objective optimization framework based on the Non-
dominated Sorting Genetic Algorithm 11 (NSGA-II) to optimize breaststroke swimming techniques. The framework
integrates a biomechanical model that combines hydrodynamic forces, joint kinematics, and energy expenditure to address
three conflicting objectives: maximizing swimming velocity, improving energy efficiency, and minimizing joint load.
Experimental validation conducted with professional swimmers demonstrated that the optimized stroke techniques
achieved up to a 20% reduction in peak joint loads at the shoulder and knee, significantly reducing the risk of overuse
injuries. Additionally, energy consumption per stroke cycle decreased by 15%-20%, while propulsion efficiency was
notably enhanced. The framework generates Pareto-optimal solutions, offering a spectrum of trade-offs that can be tailored
to individual performance goals and physical constraints. This approach provides a quantitative, data-driven alternative to
traditional training methods, enabling personalized and informed decision-making for athletes and coaches. Beyond
breaststroke, the methodology can be extended to other swimming techniques and athletic disciplines, addressing the
interplay between performance, efficiency, and safety. This study bridges the gap between theoretical modeling and
practical application, offering a scalable and robust solution for optimizing sports performance and reducing injury risks.

Keywords: Biomechanical Optimization; Multi-Objective Optimization; Breaststroke Swimming; NSGA-I1.

1. Introduction

Competitive swimming is a sport that demands an intricate balance between physical performance and technical
precision, where biomechanical optimization plays an essential role in achieving peak performance while minimizing
injury risks. Among the four major swimming styles, breaststroke is particularly distinctive due to its unique propulsion
and recovery phases, which require precise coordination of arm pulls, leg kicks, and body undulation movements [1].
Unlike other swimming styles, breaststroke generates propulsion through a combination of simultaneous upper and lower
body actions, making it biomechanically complex and hydrodynamically inefficient compared to styles such as freestyle
or butterfly [2]. These movements directly influence performance metrics such as swimming velocity, energy
expenditure, and joint stress [3]. Improper breaststroke techniques not only reduce propulsion efficiency but also increase
the risk of overuse injuries, particularly in the knee and hip joints, due to repetitive stress and inappropriate movement
patterns [4]. This dual challenge of optimizing performance while safeguarding athlete health underscores the importance
of biomechanical research in competitive swimming, particularly for the breaststroke style.
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Recent advancements in computational modeling and simulation have provided new avenues for analyzing and
optimizing swimming biomechanics. Over the past decade, hydrodynamic and kinematic models have been developed
to quantify the forces acting on swimmers and the resulting biomechanical responses [5, 6]. These models enable detailed
simulation of swimming techniques, offering insights into the mechanics of propulsion, resistance, and energy transfer.
For instance, numerical simulations have been widely employed to optimize body positioning and reduce drag in
freestyle and backstroke swimming [7]. However, breaststroke presents unique challenges due to its nonlinear and
multifactorial nature, where propulsion efficiency, energy expenditure, and joint stress are tightly coupled and often
conflicting. Traditional optimization approaches, such as empirical adjustments based on coaching experience or single-
objective optimizations focusing solely on speed, often fail to address these trade-offs comprehensively [8]. For instance,
maximizing swimming velocity may inadvertently increase joint loads, leading to chronic injuries over time.
Furthermore, the reliance on linear modeling and isolated performance metrics limits the ability to capture the dynamic
interactions between biomechanical and hydrodynamic factors. These limitations emphasize the need for advanced
optimization frameworks capable of addressing the multifaceted nature of swimming biomechanics holistically.

To address these challenges, this study introduces a novel multi-objective optimization framework for breaststroke
biomechanics, employing the Non-Dominated Sorting Genetic Algorithm (NSGA-I1). NSGA-I1I is a well-established
method in multi-objective optimization, known for its ability to handle complex and conflicting objectives by generating
a Pareto front of optimal solutions [9]. In this study, optimization focuses on three critical objectives: maximizing
swimming velocity, improving energy efficiency, and minimizing joint stress. These objectives were selected not only
for their importance in enhancing performance but also for their relevance to injury prevention and long-term athlete
well-being. By integrating NSGA-I1 with a comprehensive biomechanical model that incorporates hydrodynamic forces,
joint kinematics, and energy expenditure, this research provides a robust framework for exploring trade-offs among these
competing objectives [10]. Unlike traditional single-objective methods, the proposed approach enables the generation of
a spectrum of optimal solutions, offering athletes and coaches greater flexibility in selecting techniques tailored to
specific performance goals and physical conditions.

In the field of swimming biomechanics, existing research has predominantly focused on single-objective
optimizations (e.g., enhancing speed or reducing energy consumption), neglecting the complex interplay among
swimming velocity, energy efficiency, and joint load [11]. Traditional breaststroke training methods further rely on
experience-driven adjustments, lacking systematic analysis to balance these conflicting objectives [12]. This study
addresses this gap by integrating a multi-objective optimization framework—based on the Non-dominated Sorting
Genetic Algorithm 11 (NSGA-II)—with a comprehensive biomechanical model, aiming to simultaneously optimize
swimming velocity, energy efficiency, and joint load in breaststroke techniques. The innovation of this research lies in
its holistic integration of computational biomechanics with advanced optimization algorithms. Unlike previous studies
that explored isolated aspects of swimming optimization (drag reduction or propulsion efficiency), this work is among
the first to adopt a multi-objective framework that balances performance and safety considerations. The proposed
framework is validated through experimental studies with elite swimmers, ensuring its practical applicability. By
bridging theoretical modeling and real-world implementation, the study not only advances computational optimization
techniques in sports science but also provides data-driven insights for athletes and coaches. The methodological
advancements here have the potential to revolutionize training methodologies, improve performance outcomes, and
reduce injury risks in competitive swimming [13]. Moreover, the approach serves as a foundation for future multi-
objective optimization research in other sports disciplines, where balancing performance and safety is critical. This study
thus offers a personalized, data-driven training tool that enhances training efficiency, optimizes athletic performance,
and bridges the divide between academic research and practical applications in swimming biomechanics.

The remainder of this paper is organized as follows: Part 2 details the biomechanical model for breaststroke
swimming, including hydrodynamic and kinematic principles. Part 3 outlines the multi-objective optimization
framework based on the NSGA-II algorithm. Part 4 describes the experimental validation process, including
experimental setup, data collection, and result analysis. Part 5 discusses the implications and applications of the findings.
Finally, Part 6 summarizes the key findings of the study and outlines directions for future research.

2. Biomechanical Model for Breaststroke Swimming
2.1. Hydrodynamic and Kinematic Principles

Breaststroke swimming is characterized by its cyclic propulsion-recovery phases, with propulsion primarily
generated through synchronized arm pulls and leg kicks [14]. Hydrodynamic forces, including drag, lift, and thrust, play
a significant role in determining the swimmer’s motion [15]. The propulsion phase is driven by the legs through a whip-
like motion, where the knees flex and extend, followed by rapid plantar flexion of the ankle joints to push water backward
[13]. Simultaneously, the arms create propulsion using a combination of drag-based and lift-based forces, sweeping in a
semicircular motion [16, 17]. The combined effect of these forces determines forward velocity and stroke efficiency.

Resistance forces counteract propulsion and consist of form drag, wave drag, and skin friction drag [18]. Form drag,
caused by the swimmer’s body position and frontal area, is reduced during the streamlined recovery phase, while wave
drag is generated by surface disturbances during propulsion. Maintaining a low head position and streamlined body
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alignment minimizes these forces [19]. Skin friction drag, though smaller in magnitude, arises from water viscosity and
the swimmer’s body surface area. Figure 1 demonstrates the directions and magnitudes of these forces acting on the
swimmer during a stroke cycle.
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Figure 1. Hydrodynamic forces acting on the swimmer: drag, lift, and propulsion directions and magnitudes

Kinematic analysis reveals that joint coordination is crucial in breaststroke swimming. The hip, knee, and ankle joints
are responsible for generating thrust during the leg kick, while the shoulder and elbow joints coordinate the arm pull.
Improper timing or deviations in joint range of motion can disrupt the cycle’s fluidity, reducing propulsion efficiency
and increasing joint stress. Advanced motion capture systems have been used to analyze these movements, providing
precise data for biomechanical modeling [20]. Figure 2 illustrates the skeletal motion during the breaststroke cycle,
highlighting key phases of propulsion and recovery.
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Figure 2. Skeletal motion during the breaststroke cycle, illustrating propulsion and recovery phases

2.2. Biomechanical Model Construction

The biomechanical model for breaststroke swimming integrates hydrodynamic, kinematic, and energy expenditure
components [21]. These components collectively simulate swimming dynamics and provide insights into performance
and safety. The key elements of the model include propulsion force calculations, joint load analysis, and energy
expenditure estimation.

Propulsion forces are calculated using hydrodynamic equations. The total thrust (T) is determined from the drag
force (F,) and lift force (F;) generated during the arm pull and leg kick. The drag force is expressed as:

1
Fd = EpCdAUZ (1)

where p is water density, C, is the drag coefficient, 4 is the projected frontal area, and v is the relative velocity of water
flow. The lift force (F;) is similarly computed using lift coefficients and velocity profiles. A three-dimensional unsteady
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CFD simulation is conducted using the transient k- SST turbulence model (ANSYSS Fluent v2022R1), with a time step
0f 0.01 s. Grid independence is verified until the residual is <10™*. The model captured free surface fluctuations through
the VOF method, and the consistency between the vortex shedding frequency and the PIV experimental data is validated
(error <8%) [22]. These simulations account for turbulent flow and vortex shedding around the swimmer's body, ensuring
accurate force predictions.

Joint load analysis focuses on the forces and torques experienced by the hip, knee, and ankle joints during the leg
kick, as well as the shoulder and elbow joints during the arm pull. Inverse dynamics methods are used to calculate these
loads, combining kinematic data with external hydrodynamic forces. This analysis identifies high-stress regions in the
stroke cycle that could lead to overuse injuries [23]. Figure 3 illustrates the torque profiles for key joints, showing
variations throughout the stroke cycle.
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Figure 3. Joint torque profiles for hip, knee, and ankle during one stroke cycle

Energy expenditure is estimated using biomechanical efficiency metrics. The total metabolic energy consumption
(E) is computed as the sum of mechanical work and resistive losses:

E =W, +W, 6

where W, is the mechanical work performed by the swimmer and W, represents energy losses due to hydrodynamic
resistance. Oxygen consumption data is used to validate these estimates, correlating metabolic effort with stroke
efficiency. Figure 4 presents the biomechanical model framework, integrating hydrodynamic, kinematic, and energy
components.
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Figure 4. Biomechanical model framework for breaststroke swimming

2.3. Selection of Performance Indicators

The selection of performance indicators is critical for evaluating and optimizing breaststroke biomechanics. In this
study, three primary indicators are chosen:

Swimming velocity, energy efficiency, and joint load. Swimming velocity serves as a direct measure of propulsion
effectiveness, reflecting the swimmer’s ability to overcome resistance forces. Energy efficiency, defined as the energy
cost per unit distance, provides insights into metabolic demands and stroke sustainability. Finally, joint load indicators,
such as peak torque and cumulative force, are essential for assessing the biomechanical safety of stroke techniques
[24, 25].

The interplay between these indicators highlights the need for multi-objective optimization. For instance, maximizing
swimming velocity may inadvertently increase joint loads, necessitating a trade-off between performance and safety.
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Similarly, improving energy efficiency may require adjustments to stroke mechanics that could impact propulsion. Table
1 summarizes these indicators and their biomechanical significance, emphasizing their role in guiding training and
technique refinement.

Table 1. Key Performance Indicators And Their Biomechanical Significance

Indicator Definition Biological Significance

Swimming Velocity ~Speed of forward motion  Measure of propulsion effectiveness
Energy Efficiency Energy cost per unit distance Reflects metabolic efficiency

Joint Load Peak joint torque during stroke Indicator of injury risk

3. Non-Dominated Sorting Genetic Algorithm
3.1. Overview of NSGA-II

The Non-Dominated Sorting Genetic Algorithm 11 (NSGA-II) is a widely adopted evolutionary algorithm for solving
multi-objective optimization problems (MOPs). It achieves this by simultaneously optimizing multiple conflicting
objectives, identifying a set of Pareto-optimal solutions that balance trade-offs between objectives [5]. NSGA-II is
celebrated for its computational efficiency, simplicity, and ability to maintain a diverse set of solutions. The algorithm’s
core is structured around three main stages: non-dominated sorting, crowding distance calculation, and population
selection. These components collectively ensure the exploration and exploitation of the solution space, converging the
population toward a well-distributed Pareto front.

The first step in NSGA-II is non-dominated sorting, which classifies the population into multiple Pareto fronts. Each
solution is compared against others in the population to determine whether it is dominated, i.e., if another solution is
better in at least one objective and no worse in all others. Solutions that are not dominated form the first Pareto front are
assigned the highest rank. Subsequent fronts are formed by iteratively removing the solutions of higher ranks, ensuring
hierarchical organization of the population [8]. This sorting mechanism is crucial for identifying candidate solutions that
contribute to the Pareto-optimal set.

Following the non-dominated sorting process, NSGA-II calculates the crowding distance for each solution within a
Pareto front. The crowding distance quantifies the diversity of solutions by measuring the average distance between a
solution and its neighbors in the objective space. Solutions with larger crowding distances are preferred, as they
contribute to maintaining a uniformly distributed Pareto front. This metric ensures that the algorithm avoids premature
convergence to localized regions and explores unexplored areas of the objective space [4].

The final stage is population selection, which combines the parent and offspring populations and selects the next
generation based on rank and crowding distance. Solutions are selected in order of increasing rank, and within the same
rank, those with higher crowding distances are prioritized. This elitist selection strategy ensures that the algorithm retains
high-quality solutions while preserving diversity [9].

Figure 5 illustrates the algorithm’s workflow, highlighting its iterative nature and the integration of these core
processes. NSGA-II’s computational efficiency stems from its O(MN 2) complexity, where M is the number of
objectives and N is the population size. By balancing selection pressure, diversity preservation, and convergence, NSGA-
Il has become a benchmark method for multi-objective evolutionary algorithms.
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Figure 5. Algorithmic workflow of NSGA-II
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3.2. Optimization Objectives and Constraints

In the context of multi-objective optimization using NSGA-II, the definition of clear and quantifiable objective
functions is essential for guiding the algorithm toward optimal solutions. The physiological boundaries (range of motion,
ROM; metabolic rate) are set according to the Standards for Range of Motion in Elite Swimmers (2019) issued by the
Sports Medicine Committee of the Fédération Internationale de Natation (FINA) and the measured data from relevant
literatures. The knee flexion range is limited to 120°-180° (fmin= 120°, Omax = 180°), and the upper limit of shoulder
abduction angle is 180°. The metabolic rate boundary is determined based on the oxygen uptake—energy consumption
conversion model (1 MET = 3.5 ml O, /kg/min), combined with the test values of athletes' maximal oxygen uptake
(VO, max). For biomechanical systems, such as swimming performance optimization, the objectives are often
conflicting, requiring careful trade-offs. This section defines three primary optimization objectives and discusses the
constraints imposed during the optimization process.

The first objective is to maximize swimming velocity (v), which directly reflects the swimmer's performance. The
velocity is calculated as the mean forward speed during a complete stroke cycle and is influenced by both propulsion
forces and hydrodynamic resistance. Mathematically, this can be expressed as:

fi=-v 3)

where the negative sign indicates that NSGA-II minimizes this objective, aligning with its minimization framework.
Maximizing velocity often conflicts with other objectives, such as energy efficiency and joint load, necessitating a multi-
objective approach.

The second objective is to minimize energy consumption (E), which ensures long-term sustainability of the
swimmer's performance. Energy consumption is calculated as the sum of mechanical work (W,,) and resistive energy
losses (W;.):

fo=E = Wy + W, @)

This objective is critical for endurance swimming, where excessive energy expenditure may lead to premature fatigue.
The energy model integrates biomechanical and physiological factors, including oxygen uptake and metabolic rates.

The third objective is to minimize joint load (L), which is crucial for preventing overuse injuries and ensuring
biomechanical safety. Joint load is quantified as the cumulative torque experienced by key joints (e.g., shoulder, knee,
and ankle) during a stroke cycle:

f3 =X T (®)

where t; represents the torque at joint i, and n is the total number of joints analyzed. Minimizing joint load is particularly
relevant for elite swimmers, who often perform repetitive strokes over extended periods.

The optimization process is subject to several constraints that ensure the feasibility and practicality of the solutions.
First, joint range of motion (ROM) constraints are applied to prevent unrealistic or injurious movements. For example:

Qmin,i < Qi < Hmax,i (6)

where 6; is the joint angle, and 6,,;,; and 6.« ; are the minimum and maximum allowable angles, respectively. These
constraints are derived from anatomical studies and ensure that the swimmer's movements remain within physiological
limits.

Second, hydrodynamic constraints are imposed to account for the interaction between the swimmer's body and the
surrounding fluid. These include limits on drag force and flow separation, which are modeled using computational fluid
dynamics (CFD) simulations:

Cd < Cd,max (7)

where Cy is the drag coefficient, and C; hax IS the maximum allowable value based on swimmer-specific data. Such
constraints prevent the algorithm from converging to hydrodynamically infeasible solutions.

Finally, temporal constraints are applied to ensure the synchronization of arm and leg movements during the stroke
cycle. These constraints are expressed as phase relationships between joint motions, maintaining biomechanical realism.
Figure 6 summarizes the optimization objectives and constraints within the NSGA-II framework.

‘ Maximize Velocity ‘ | Minimize Energy Consumption ! | Minimize Joint Load | ‘ Range of Motion ‘ ‘ Hydrodynamic Limits ‘ | Temporal Synchronization |

N

—— — g
Optimization Process

Figure 6. Optimization Framework for Velocity, Energy, and Joint Load with Constraints
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3.3. Implementation in the Biomechanical Model

The implementation of NSGA-I1 within the biomechanical model for breaststroke swimming involves integrating the
optimization algorithm with the computational simulation of swimming dynamics. The biomechanical model provides
a detailed representation of the swimmer’s motion, incorporating hydrodynamic forces, joint kinematics, and metabolic
energy consumption. NSGA-II is employed to optimize three conflicting objectives: maximizing swimming velocity,
minimizing energy expenditure, and minimizing joint load, as described in Section 3.2.

The optimization process begins with the initialization of a population of candidate solutions, where each solution
represents a unique combination of stroke parameters, such as joint angles, stroke frequency, and kick amplitude. These
parameters are encoded as decision variables, with bounds set according to physiological constraints and hydrodynamic
feasibility. The biomechanical model evaluates each solution by simulating a complete stroke cycle, calculating the
velocity, energy expenditure, and joint load for use as objective function values.

The outputs of NSGA-II are a set of Pareto-optimal solutions, which represent trade-offs between the objectives.
These solutions provide swimmers and coaches with actionable insights for technique refinement. Figure 7 illustrates
the algorithm’s input-output framework, highlighting the decision variables, constraints, and optimization results.

Input: Input:
Joint Angles Stroke Frequency

A i
NSGA-II
Optimization
_| Biomechanical Model

Y Y h 4
Output: Output: Output:
Pareto-Optimal Pareto-Optimal Pareto-Optimal

Velocity Energy Consumption Joint Load

Figure 7. Input-Output Framework of NSGA-I1 for Biomechanical Model

This study aims to optimize breaststroke by improving swimming speed, energy efficiency, and reducing joint load.
To achieve this, it first defines the optimization problem, then constructs a biomechanical model combining
hydrodynamics, kinematics, and energy expenditure. Subsequently, a multi - objective optimization based on the NSGA
- 11 algorithm is employed to obtain Pareto - optimal solutions. Finally, the model and algorithm are experimentally
validated using professional swimmers. The NSGA - Il algorithm, rooted in evolutionary theory, simulates natural
selection and genetic processes. Leveraging non - dominated sorting and crowding distance mechanisms, it efficiently
finds Pareto - optimal solutions for conflicting objectives, ensuring population diversity and fast convergence. Its
implementation involves initializing the population, evaluating objectives, and iteratively performing sorting, selection,
crossover, and mutation until termination. To enhance the model's practicality, each participant's body parameters (limb
length, flexibility, etc.) are measured and integrated into the biomechanical model. This personalization enables precise
simulation of swimming motions, tailoring optimized techniques to individual athletes' physical traits.

4. Experimental Validation and Results
4.1. Experimental Setup

To validate the biomechanical model and the optimization framework based on NSGA-II, an experimental study was
conducted with professional breaststroke swimmers. The experimental setup was designed to collect high-resolution
kinematic, hydrodynamic, and physiological data during swimming, ensuring precise validation of the optimization
results.

Ten professional breaststroke swimmers (five male and five female; age: 22+3 years; height: 178 £ 7 cm; weight: 70
+ 5 kg) participated in the experiment. All participants had at least five years of competitive swimming experience and
were selected based on their proficiency in breaststroke technique and their ability to maintain consistent performance
across repeated trials. To ensure the reliability of the results, participants with recent injuries or medical conditions
affecting their swimming performance were excluded. Ethical approval was obtained from the institutional review board,
and all participants provided informed consent before the study.

The data collection process employed a combination of advanced measurement systems. Underwater high-speed
cameras with a resolution of 1920 x 1080 at 120 fps were positioned around the swimming pool to capture the swimmer’s
motion from multiple angles. These recordings were synchronized with a multi-camera motion capture system, which
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utilized reflective markers placed on key anatomical landmarks. The motion capture system, with a spatial accuracy of
+0.5 mm, enabled precise tracking of joint kinematics and body segment movements. Hydrodynamic data were acquired
using a custom-built waterproof force sensor attached to a tether, which measured drag forces at a sampling rate of 100
Hz. Additionally, a portable metabolic analyzer was used to measure oxygen consumption, providing estimates of energy
expenditure during each trial. Figure 8 illustrates the experimental setup, including the placement of cameras, the motion
capture system, and the force measurement equipment.

Motion Capture System | ‘ Force Measurement Device

/

Tracks Position Records Forces
~ e

Swimmer

Monitors Movement Monitors Movement
7 X
Yy
Underwater Camera 1 I ’ Underwater Camera 2

Figure 8. Experimental setup showing underwater cameras, motion capture system, and force measurement devices used
during the swimming trials

The experimental procedure consisted of three main phases: baseline testing, motion analysis, and optimization
validation. During baseline testing, swimmers performed warm-up trials to familiarize themselves with the experimental
setup and ensure consistent swimming performance. Reflective markers were attached to anatomical landmarks,
including the shoulders, elbows, wrists, hips, knees, and ankles, as shown in Figure 9. These markers were used to track
joint movements throughout the stroke cycle.

C‘qﬁ] Ca& ?

Shoulder

Wrist (R)

Caiira 3 Caiira 4

Ankle (R)

Human Figure

Figure 9. Motion capture system with reflective markers placed on key anatomical landmarks for joint tracking and
kinematic analysis

In the motion analysis phase, participants performed five full-stroke swimming trials at a controlled pace, with each
trial lasting approximately 20 s. The swimmers’ movements were recorded by the underwater cameras and synchronized
with the motion capture system. To ensure reproducibility, participants maintained a constant stroke frequency and
avoided unnecessary body movements. The collected data were used to calculate stroke-specific parameters, including
joint torques, hydrodynamic forces, and energy expenditure.

Finally, in the optimization validation phase, swimmers executed a series of optimized strokes based on the NSGA-
Il outputs. These trials involved adjusting stroke parameters, such as kick amplitude and arm pull trajectory, to match
the optimization results. The experimental outcomes were compared with the predictions from the biomechanical model
to assess the accuracy and effectiveness of the optimization framework.
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4.2. Analysis of Pareto-Optimal Solutions

The optimization process using NSGA-II generated a set of Pareto-optimal solutions, each representing a unique
trade-off between swimming velocity, energy consumption, and joint load. These solutions form a Pareto front in the
objective space, as shown in Figure 10, where no single solution is strictly better than others across all objectives. The
analysis of the Pareto front provides valuable insights into the performance of trade-offs and helps in selecting the most
appropriate solution based on specific requirements.

Joint Load (N)

5
Swimming Velocity (m/s)

Figure 10. Pareto Front Showing Trade-offs Between Velocity, Energy, and Joint Load

Sensitivity analysis is conducted to evaluate how changes in input parameters affect the Pareto front. Key parameters
like joint angles and metabolic rates were varied to observe their impacts on the optimization outcomes. The analysis
shows that joint angles significantly influence the optimization results, as slight changes can alter the balance between
swimming velocity and joint load. Metabolic rate primarily affects energy efficiency but has a smaller impact on velocity
and joint load. This is because joint angles directly relate to mechanical efficiency in swimming, while metabolic rate
mainly reflects physiological energy consumption differences.

The Pareto front demonstrates the conflicting nature of the objectives. For instance, maximizing swimming velocity
often results in increased energy consumption and joint load due to higher propulsion forces and faster stroke cycles.
Conversely, minimizing energy consumption or joint load typically leads to a reduction in swimming velocity, as lower
propulsion forces are required to achieve these objectives. This trade-off is evident from the distribution of solutions
along the Pareto front, where high-velocity solutions are concentrated in one region, while low-energy and low-load
solutions are concentrated in another.

The solutions on the Pareto front were further analyzed by selecting representative Pareto-optimal solutions. Table 2
compares three representative solutions: one focusing on maximum velocity, one prioritizing minimum energy
consumption, and one minimizing joint load. The solutions are characterized by their corresponding performance
metrics, including swimming velocity, energy consumption, and joint load. These metrics highlight the trade-offs
between objectives, as shown in the Table 2. The high-velocity solution achieves the fastest swimming speed of 2.0 m/s,
but this comes at the cost of a 20% increase in energy consumption and a 15% increase in joint load compared to the
baseline. On the other hand, the low-energy solution reduces energy consumption by 18% but sacrifices 10% of the
swimming velocity. The low-load solution achieves a 25% reduction in joint load, which is particularly beneficial for
injury prevention, but results in a 15% decrease in velocity and a slight increase in energy consumption due to suboptimal
propulsion efficiency. These trade-offs illustrate the importance of balancing performance, efficiency, and safety in
swimming biomechanics.

Table 2. Performance metrics of representative Pareto-optimal solutions

Solution Type Velocity (m/s) Energy Consumption (J) Joint Load (Nm)
High-Velocity 2.0 4450 119.9
Low-Energy 1.8 3700 105
Low-Load 1.7 3900 90

The diversity of solutions on the Pareto front highlights the flexibility of the optimization framework in addressing
different performance goals. For competitive swimmers, high-velocity solutions may be preferred to maximize
performance during races. However, for training sessions or injury recovery, solutions with lower joint loads or energy
consumption may be prioritized to ensure long-term sustainability and safety.
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The Pareto-optimal solutions also provide actionable insights for coaches and athletes. For instance, by analyzing the
specific stroke parameters (e.g., kick amplitude, stroke frequency) associated with each solution, targeted adjustments
can be made to achieve desired outcomes. The biomechanical model and NSGA-II framework enable a systematic
exploration of these trade-offs, facilitating evidence-based decision-making in swimming performance optimization.

4.3. Comparison with Traditional Training Methods

The optimization framework based on NSGA-II offers significant improvements over traditional training methods
by systematically balancing performance, efficiency, and joint safety. This section compares the biomechanical and
physiological performance metrics of traditional breaststroke techniques with the optimized strokes derived from the
Pareto-optimal solutions.

Traditional breaststroke training primarily focuses on maximizing velocity through experience-driven techniques,
often without quantitatively addressing the trade-offs between energy consumption and joint load. In contrast, the
optimization framework explicitly considers these trade-offs, enabling swimmers to achieve a more sustainable and
injury-preventive stroke.

One of the most noticeable differences lies in joint load distribution during the stroke cycle. Figure 11 shows the joint
load variation across a complete stroke cycle for traditional and optimized techniques. The optimized technique reduces
peak joint loads at the shoulder and knee joints by approximately 20%, which is critical for preventing overuse injuries.
This reduction is achieved by refining stroke parameters, such as kick amplitude and arm pull trajectory, to minimize
unnecessary stress on the joints while maintaining propulsion efficiency. In traditional technigues, the lack of systematic
analysis often results in excessive joint loads, particularly during the pull and kick phases.

Figure 11. Joint Load Variation During Stroke Cycle for Traditional vs. Optimized Techniques

Energy efficiency represents another key advantage of optimized strokes. Figure 12 compares the total energy
consumption per stroke cycle for traditional and optimized techniques. On average, optimized strokes reduce energy
consumption by 15%-20%, primarily due to improved hydrodynamic efficiency and more effective movement patterns.
By adjusting the stroke frequency and kick timing, the optimized technique minimizes energy losses caused by drag
forces and uncoordinated limb movements. In contrast, traditional training methods often prioritize speed without fully
accounting for energy efficiency, leading to higher metabolic costs, especially during prolonged swimming sessions.
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Figure 12. Comparison of energy consumption per stroke cycle between traditional and optimized techniques
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In addition to joint load and energy efficiency, the optimized technique demonstrates a more balanced performance
profile. Swimmers using the optimized strokes reported improved stroke consistency and reduced fatigue during repeated
trials, suggesting that the optimization framework not only enhances short-term performance but also contributes to
long-term sustainability. The traditional techniques, by contrast, often lead to inconsistent outcomes due to variations in
swimmer experience and coaching methods.

The advantages of the optimized strokes highlight the value of integrating data-driven optimization frameworks into
swimming training. By systematically analyzing and refining stroke parameters, the optimization framework provides a
scientific basis for improving performance, reducing injury risks, and enhancing energy efficiency. While traditional
methods rely heavily on subjective assessments and experience, the proposed approach offers a quantitative and
reproducible methodology for stroke optimization.

These findings underscore the potential of combining biomechanical modeling with multi-objective optimization to
revolutionize traditional training practices. The ability to customize strokes based on individual swimmer profiles further
enhances the applicability of the framework in real-world training environments.

5. Discussion
5.1. Contributions to Training Optimization

This study advances the field of swimming biomechanics by proposing a systematic and data-driven framework that
integrates biomechanical modeling with multi-objective optimization to address the complex trade-offs inherent in
swimming performance. The contributions of this research to training optimization are multifaceted, encompassing
improvements in training efficacy, injury mitigation, and personalized coaching methodologies.

A central contribution of this work lies in its ability to enhance training efficiency through the identification of Pareto-
optimal solutions. Traditional training approaches often rely heavily on experiential methods and qualitative
assessments, which are inherently subjective and may not fully capture the intricate interplay between performance,
energy efficiency, and joint safety. By contrast, the presented framework employs quantitative optimization techniques
to systematically explore and resolve trade-offs among these conflicting objectives. This enables the design of targeted
training interventions that maximize performance outcomes while maintaining biomechanical and physiological balance.
Consequently, the framework reduces the reliance on trial-and-error in stroke refinement, thereby improving the overall
efficiency of training regimens.

Another significant contribution is the framework’s capacity to mitigate the risk of injury associated with repetitive
high-intensity swimming. Elite swimmers are particularly susceptible to overuse injuries, such as shoulder impingement
and knee strain, due to the repetitive nature of their training cycles. The analysis of Pareto-optimal solutions demonstrates
that optimized stroke techniques can reduce peak joint loads by up to 20% compared to traditional breaststroke
techniques. This reduction is achieved by systematically adjusting stroke parameters, such as joint angles, kick
amplitude, and stroke frequency, to minimize biomechanical stress while preserving hydrodynamic efficiency. The
potential to decrease joint loads without adversely affecting performance underscores the framework’s value in
promoting long-term joint health and sustainability in competitive swimming.

Furthermore, this study contributes to the growing emphasis on individualized training methodologies by enabling
the customization of stroke techniques based on an athlete’s unique biomechanical and physiological profile. The
variability in anatomical structure, joint flexibility, and metabolic capacity among swimmers necessitates a tailored
approach to training. The proposed optimization framework accounts for these individual differences, allowing for the
generation of personalized stroke solutions that align with each swimmer’s specific capabilities and constraints. This
capacity for individualization represents a significant departure from traditional methods, which often adopt a one-size-
fits-all approach to technique training.

To its technical contributions, the proposed framework bridges the gap between theoretical research and practical
application in sports science. By visualizing Pareto fronts and quantifying the trade-offs among multiple objectives, the
framework provides coaches with actionable insights that can be directly translated into practice. These insights enable
evidence-based decision-making, where training strategies are informed by objective data rather than subjective
judgment. This aligns with the broader trend in sports science toward integrating computational modeling and
optimization techniques into practical coaching workflows, thereby fostering a more rigorous and systematic approach
to performance enhancement.

The optimization results indicate that increasing swimming speed often leads to higher energy consumption and joint
loads, while reducing joint loads may compromise swimming speed. The Pareto-optimal solutions from the NSGA - 11
algorithm reveal these trade-offs. The optimized breaststroke techniques enhance speed, boost energy efficiency, and
cut joint loads, thus lowering injury risks. These findings bear great significance for swimming training. In practical
terms, selecting an optimal solution requires balancing speed and joint safety based on swimmers' specific situations.
During pre-competition intensive training, enhancing speed is crucial, so opt for solutions with high velocity and
moderate joint load. In rehabilitation or long-term training, prioritize joint safety by choosing low-joint-load solutions
with slightly lower speed. This selection must involve thorough communication with coaches and athletes to align with
their needs and physical conditions, ensuring a balance between competitive performance and athletic health.
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5.2. Limitations of the Study

Despite the advancements presented in this study, certain limitations should be considered when interpreting the
findings. These limitations stem from the simplifications inherent in the modeling process and the constraints imposed
by the experimental setup, which may affect the broader applicability of the proposed framework. A primary limitation
lies in the hydrodynamic modeling assumptions used in the biomechanical analysis. The forces acting on a swimmer are
influenced by complex factors, such as turbulence, unsteady flow effects, and subtle variations in body posture during
the stroke cycle. However, the study employs quasi-static approximations and simplified drag force models to make the
optimization process computationally feasible. While these assumptions enable efficient analysis, they may not fully
capture the intricate fluid-body interactions that occur during swimming. Incorporating advanced computational fluid
dynamics (CFD) approaches in future research could provide a more accurate representation of hydrodynamic forces,
albeit at the cost of increased computational complexity.

The experimental design also presents limitations related to the scale and diversity of the participant cohort. The
study involved ten professional swimmers, which, while sufficient for demonstrating the feasibility of the framework,
may not adequately represent broader swimmer populations. Factors such as variations in body morphology, muscle
strength, and training background can significantly impact the effectiveness of the optimized stroke techniques.
Expanding the study to include a larger and more diverse sample, including swimmers of different skill levels, age
groups, and physiological characteristics, would provide a more comprehensive evaluation of the framework’s
generalizability and robustness.

Additionally, the controlled nature of the experimental environment may limit the applicability of the findings to
real-world swimming scenarios. For instance, the use of tethered force sensors and motion capture systems, while
essential for precise data collection, does not fully replicate the dynamic conditions experienced during competitive
swimming. External factors such as race pacing, fatigue, and environmental variability may influence stroke performance
in ways not accounted for in the experimental setup. Future work could address this issue by employing wearable sensor
technologies or advanced underwater monitoring systems, enabling data collection in more realistic settings.

These limitations highlight areas for further refinement in both the modeling and experimental aspects of the study.
Addressing these issues will enhance the accuracy and applicability of the proposed framework, paving the way for
broader adoption in swimming biomechanics and beyond. The quasi-steady drag model (Equation 1) may overestimate
the thrust by approximately 12% during the acceleration phase (compared with transient CFD results). Especially in the
leg kick acceleration period (t=0.2-0.5 s), the peak thrust error of the simplified model reaches 18%.

5.3. Future Research Directions

Building on the findings of this study, several promising avenues for future research can further enhance the
applicability and impact of the proposed framework. These directions aim to address current limitations, expand the
scope of application, and incorporate additional factors to improve the comprehensiveness of biomechanical
optimization.

One potential direction is the inclusion of psychological and cognitive factors into the optimization framework.
Swimming performance is influenced not only by biomechanical and physiological parameters but also by psychological
aspects such as focus, decision-making under pressure, and fatigue perception. Future studies could explore methods to
integrate these variables by employing psychophysiological models or real-time monitoring of cognitive load during
swimming. This would allow the development of optimization strategies that account for both physical and mental
demands, providing a holistic approach to performance enhancement.

Expanding the framework to other swimming techniques, such as freestyle, backstroke, and butterfly, represents
another fruitful direction. Each stroke type presents unique biomechanical challenges and hydrodynamic characteristics
that require tailored optimization strategies. By adapting the current framework to these techniques, researchers can
investigate stroke-specific trade-offs and provide targeted recommendations for swimmers and coaches. Additionally,
the framework could be extended to other aquatic sports, such as water polo or synchronized swimming, where
biomechanical efficiency and injury prevention are equally critical.

Beyond swimming, the proposed methodology has the potential to be generalized to other sports and physical
activities. For example, multi-objective optimization could be applied to running, cycling, or rowing, where similar
trade-offs between performance, energy efficiency, and injury risk are present. Adapting the framework to land-based
or hybrid sports would require modifications to the biomechanical models but could offer valuable insights into
optimizing performance across a wide range of athletic disciplines.

Future research should explore integrating real-time feedback systems into the optimization framework. Current data
suggests non-elite swimmers could achieve more significant improvements in speed and energy efficiency, while
rehabilitating swimmers prioritize joint load reduction. Thus, future studies should expand to these populations to
validate the model's applicability. Integrating this optimization framework with wearable feedback systems presents
significant potential. Incorporating psychological parameters (e.g., perceived exertion, stress) via psychophysiological
modeling and real-time monitoring can enhance training strategies. Adding metrics like psychological resilience and
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cognitive load stabilizes competitive performance by mitigating stress-related underperformance, creating a holistic
model for physical and mental optimization. Wearable sensors could monitor real-time motion parameters, feeding data
into the model to dynamically adjust optimization plans and provide instant feedback. Despite challenges in data
precision and real-time processing, this integration enables personalized, real-time training optimization with broad
applications. Leveraging wearable tech, computer vision, or Al, athletes can receive immediate technique feedback for
in-session dynamic optimization, bridging the gap between theory and practice. Such advancements will advance sports
biomechanics, offering deeper insights into swimming and other athletic domains.

6. Conclusion

This study successfully applied a multi-objective optimization framework, based on the Non-dominated Sorting
Genetic Algorithm Il (NSGA-II), to optimize breaststroke swimming techniques by simultaneously addressing
performance enhancement, energy efficiency, and joint safety. The integration of biomechanical modeling with advanced
optimization algorithms represents a significant step forward in the scientific analysis and improvement of swimming
techniques.

The optimized stroke solutions identified by the framework demonstrated substantial improvements in swimming
performance metrics. By refining key parameters such as stroke frequency, kick amplitude, and arm pull trajectory,
swimmers were able to achieve higher propulsion efficiency while maintaining biomechanical balance. These
improvements were accompanied by a 15%-20% reduction in energy consumption per stroke cycle compared to
traditional techniques, highlighting the efficacy of the proposed approach in addressing the metabolic demands of
swimming. Furthermore, the optimization framework successfully reduced peak joint loads, particularly in the shoulder
and knee regions, by up to 20%, mitigating the risk of overuse injuries that are common among elite swimmers. These
results underscore the potential of multi-objective optimization to balance competing objectives in complex
biomechanical systems, achieving sustainable performance improvements without compromising joint health. Our
findings are in line with prior swimming biomechanics optimization studies. But most past studies focused on single -
objective optimization. This study, via the NSGA - Il algorithm, achieves multi-objective optimization of swimming
speed, energy efficiency, and joint load. Compared to traditional methods, our optimized techniques are more effective
in reducing joint loads, probably because the NSGA - Il algorithm better balances conflicting objectives. Also, our
experimental validation confirms the practical value of the optimized techniques.

Beyond the specific context of breaststroke optimization, this study provides a novel methodological contribution to
the broader field of sports biomechanics. The proposed framework establishes a quantitative, data-driven approach to
motion analysis and performance enhancement, offering a powerful alternative to traditional training methods that often
rely on qualitative assessments. By visualizing Pareto-optimal solutions, the framework enables coaches and athletes to
make informed decisions tailored to individual performance goals and physical constraints. This personalized and
evidence-based approach aligns with the growing emphasis on precision training in competitive sports.

The implications of this research extend beyond swimming to other athletic disciplines. The methodology can be
adapted to optimize techniques in various sports where trade-offs between performance, energy efficiency, and injury
risk are critical, such as running, cycling, or rowing. Additionally, the ability to incorporate individual biomechanical
and physiological characteristics into the optimization process highlights the potential for widespread application across
diverse athlete populations and skill levels.

This study demonstrates the feasibility and efficacy of multi-objective optimization in enhancing athletic performance
while addressing safety and efficiency concerns. The integration of computational biomechanics with advanced
optimization algorithms offers a robust and scalable framework for technique refinement, paving the way for future
innovations in sports science and training methodologies.
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