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Abstract 

Advancements in computational modeling and optimization algorithms have opened new possibilities for analyzing and 

improving sports biomechanics. This study presents a multi-objective optimization framework based on the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) to optimize breaststroke swimming techniques. The framework 

integrates a biomechanical model that combines hydrodynamic forces, joint kinematics, and energy expenditure to address 

three conflicting objectives: maximizing swimming velocity, improving energy efficiency, and minimizing joint load. 

Experimental validation conducted with professional swimmers demonstrated that the optimized stroke techniques 

achieved up to a 20% reduction in peak joint loads at the shoulder and knee, significantly reducing the risk of overuse 

injuries. Additionally, energy consumption per stroke cycle decreased by 15%-20%, while propulsion efficiency was 

notably enhanced. The framework generates Pareto-optimal solutions, offering a spectrum of trade-offs that can be tailored 

to individual performance goals and physical constraints. This approach provides a quantitative, data-driven alternative to 

traditional training methods, enabling personalized and informed decision-making for athletes and coaches. Beyond 

breaststroke, the methodology can be extended to other swimming techniques and athletic disciplines, addressing the 

interplay between performance, efficiency, and safety. This study bridges the gap between theoretical modeling and 

practical application, offering a scalable and robust solution for optimizing sports performance and reducing injury risks. 
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1. Introduction 

Competitive swimming is a sport that demands an intricate balance between physical performance and technical 

precision, where biomechanical optimization plays an essential role in achieving peak performance while minimizing 

injury risks. Among the four major swimming styles, breaststroke is particularly distinctive due to its unique propulsion 

and recovery phases, which require precise coordination of arm pulls, leg kicks, and body undulation movements [1]. 

Unlike other swimming styles, breaststroke generates propulsion through a combination of simultaneous upper and lower 

body actions, making it biomechanically complex and hydrodynamically inefficient compared to styles such as freestyle 

or butterfly [2]. These movements directly influence performance metrics such as swimming velocity, energy 

expenditure, and joint stress [3]. Improper breaststroke techniques not only reduce propulsion efficiency but also increase 

the risk of overuse injuries, particularly in the knee and hip joints, due to repetitive stress and inappropriate movement 

patterns [4]. This dual challenge of optimizing performance while safeguarding athlete health underscores the importance 

of biomechanical research in competitive swimming, particularly for the breaststroke style. 
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Recent advancements in computational modeling and simulation have provided new avenues for analyzing and 

optimizing swimming biomechanics. Over the past decade, hydrodynamic and kinematic models have been developed 

to quantify the forces acting on swimmers and the resulting biomechanical responses [5, 6]. These models enable detailed 

simulation of swimming techniques, offering insights into the mechanics of propulsion, resistance, and energy transfer. 

For instance, numerical simulations have been widely employed to optimize body positioning and reduce drag in 

freestyle and backstroke swimming [7]. However, breaststroke presents unique challenges due to its nonlinear and 

multifactorial nature, where propulsion efficiency, energy expenditure, and joint stress are tightly coupled and often 

conflicting. Traditional optimization approaches, such as empirical adjustments based on coaching experience or single-

objective optimizations focusing solely on speed, often fail to address these trade-offs comprehensively [8]. For instance, 

maximizing swimming velocity may inadvertently increase joint loads, leading to chronic injuries over time. 

Furthermore, the reliance on linear modeling and isolated performance metrics limits the ability to capture the dynamic 

interactions between biomechanical and hydrodynamic factors. These limitations emphasize the need for advanced 

optimization frameworks capable of addressing the multifaceted nature of swimming biomechanics holistically. 

To address these challenges, this study introduces a novel multi-objective optimization framework for breaststroke 

biomechanics, employing the Non-Dominated Sorting Genetic Algorithm (NSGA-II). NSGA-II is a well-established 

method in multi-objective optimization, known for its ability to handle complex and conflicting objectives by generating 

a Pareto front of optimal solutions [9]. In this study, optimization focuses on three critical objectives: maximizing 

swimming velocity, improving energy efficiency, and minimizing joint stress. These objectives were selected not only 

for their importance in enhancing performance but also for their relevance to injury prevention and long-term athlete 

well-being. By integrating NSGA-II with a comprehensive biomechanical model that incorporates hydrodynamic forces, 

joint kinematics, and energy expenditure, this research provides a robust framework for exploring trade-offs among these 

competing objectives [10]. Unlike traditional single-objective methods, the proposed approach enables the generation of 

a spectrum of optimal solutions, offering athletes and coaches greater flexibility in selecting techniques tailored to 

specific performance goals and physical conditions. 

In the field of swimming biomechanics, existing research has predominantly focused on single-objective 

optimizations (e.g., enhancing speed or reducing energy consumption), neglecting the complex interplay among 

swimming velocity, energy efficiency, and joint load [11]. Traditional breaststroke training methods further rely on 

experience-driven adjustments, lacking systematic analysis to balance these conflicting objectives [12]. This study 

addresses this gap by integrating a multi-objective optimization framework—based on the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II)—with a comprehensive biomechanical model, aiming to simultaneously optimize 

swimming velocity, energy efficiency, and joint load in breaststroke techniques. The innovation of this research lies in 

its holistic integration of computational biomechanics with advanced optimization algorithms. Unlike previous studies 

that explored isolated aspects of swimming optimization (drag reduction or propulsion efficiency), this work is among 

the first to adopt a multi-objective framework that balances performance and safety considerations. The proposed 

framework is validated through experimental studies with elite swimmers, ensuring its practical applicability. By 

bridging theoretical modeling and real-world implementation, the study not only advances computational optimization 

techniques in sports science but also provides data-driven insights for athletes and coaches. The methodological 

advancements here have the potential to revolutionize training methodologies, improve performance outcomes, and 

reduce injury risks in competitive swimming [13]. Moreover, the approach serves as a foundation for future multi-

objective optimization research in other sports disciplines, where balancing performance and safety is critical. This study 

thus offers a personalized, data-driven training tool that enhances training efficiency, optimizes athletic performance, 

and bridges the divide between academic research and practical applications in swimming biomechanics. 

The remainder of this paper is organized as follows: Part 2 details the biomechanical model for breaststroke 

swimming, including hydrodynamic and kinematic principles. Part 3 outlines the multi-objective optimization 

framework based on the NSGA-II algorithm. Part 4 describes the experimental validation process, including 

experimental setup, data collection, and result analysis. Part 5 discusses the implications and applications of the findings. 

Finally, Part 6 summarizes the key findings of the study and outlines directions for future research. 

2. Biomechanical Model for Breaststroke Swimming 

2.1. Hydrodynamic and Kinematic Principles 

Breaststroke swimming is characterized by its cyclic propulsion-recovery phases, with propulsion primarily 

generated through synchronized arm pulls and leg kicks [14]. Hydrodynamic forces, including drag, lift, and thrust, play 

a significant role in determining the swimmer’s motion [15]. The propulsion phase is driven by the legs through a whip-

like motion, where the knees flex and extend, followed by rapid plantar flexion of the ankle joints to push water backward 

[13]. Simultaneously, the arms create propulsion using a combination of drag-based and lift-based forces, sweeping in a 

semicircular motion [16, 17]. The combined effect of these forces determines forward velocity and stroke efficiency. 

Resistance forces counteract propulsion and consist of form drag, wave drag, and skin friction drag [18]. Form drag, 

caused by the swimmer’s body position and frontal area, is reduced during the streamlined recovery phase, while wave 

drag is generated by surface disturbances during propulsion. Maintaining a low head position and streamlined body 
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alignment minimizes these forces [19]. Skin friction drag, though smaller in magnitude, arises from water viscosity and 

the swimmer’s body surface area. Figure 1 demonstrates the directions and magnitudes of these forces acting on the 

swimmer during a stroke cycle. 

 

Figure 1. Hydrodynamic forces acting on the swimmer: drag, lift, and propulsion directions and magnitudes 

Kinematic analysis reveals that joint coordination is crucial in breaststroke swimming. The hip, knee, and ankle joints 

are responsible for generating thrust during the leg kick, while the shoulder and elbow joints coordinate the arm pull. 

Improper timing or deviations in joint range of motion can disrupt the cycle’s fluidity, reducing propulsion efficiency 

and increasing joint stress. Advanced motion capture systems have been used to analyze these movements, providing 

precise data for biomechanical modeling [20]. Figure 2 illustrates the skeletal motion during the breaststroke cycle, 

highlighting key phases of propulsion and recovery. 

 

Figure 2. Skeletal motion during the breaststroke cycle, illustrating propulsion and recovery phases 

2.2. Biomechanical Model Construction 

The biomechanical model for breaststroke swimming integrates hydrodynamic, kinematic, and energy expenditure 

components [21]. These components collectively simulate swimming dynamics and provide insights into performance 

and safety. The key elements of the model include propulsion force calculations, joint load analysis, and energy 

expenditure estimation. 

Propulsion forces are calculated using hydrodynamic equations. The total thrust (𝑇) is determined from the drag 

force (𝐹𝑑) and lift force (𝐹𝑙) generated during the arm pull and leg kick. The drag force is expressed as: 

𝐹𝑑 =
1

2
𝜌𝐶𝑑𝐴𝑣

2  (1) 

where 𝜌 is water density, 𝐶𝑑 is the drag coefficient, 𝐴 is the projected frontal area, and 𝑣 is the relative velocity of water 

flow. The lift force (𝐹𝑙) is similarly computed using lift coefficients and velocity profiles. A three-dimensional unsteady 
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CFD simulation is conducted using the transient k-ω SST turbulence model (ANSYS Fluent v2022R1), with a time step 

of 0.01 s. Grid independence is verified until the residual is <10⁻⁴. The model captured free surface fluctuations through 

the VOF method, and the consistency between the vortex shedding frequency and the PIV experimental data is validated 

(error <8%) [22]. These simulations account for turbulent flow and vortex shedding around the swimmer's body, ensuring 

accurate force predictions. 

Joint load analysis focuses on the forces and torques experienced by the hip, knee, and ankle joints during the leg 

kick, as well as the shoulder and elbow joints during the arm pull. Inverse dynamics methods are used to calculate these 

loads, combining kinematic data with external hydrodynamic forces. This analysis identifies high-stress regions in the 

stroke cycle that could lead to overuse injuries [23]. Figure 3 illustrates the torque profiles for key joints, showing 

variations throughout the stroke cycle. 

 

Figure 3. Joint torque profiles for hip, knee, and ankle during one stroke cycle 

Energy expenditure is estimated using biomechanical efficiency metrics. The total metabolic energy consumption 

(E) is computed as the sum of mechanical work and resistive losses: 

𝐸 = 𝑊𝑚 +𝑊𝑟   (2) 

where 𝑊𝑚 is the mechanical work performed by the swimmer and 𝑊𝑟 represents energy losses due to hydrodynamic 

resistance. Oxygen consumption data is used to validate these estimates, correlating metabolic effort with stroke 

efficiency. Figure 4 presents the biomechanical model framework, integrating hydrodynamic, kinematic, and energy 

components. 

 

Figure 4. Biomechanical model framework for breaststroke swimming 

2.3. Selection of Performance Indicators 

The selection of performance indicators is critical for evaluating and optimizing breaststroke biomechanics. In this 

study, three primary indicators are chosen: 

Swimming velocity, energy efficiency, and joint load. Swimming velocity serves as a direct measure of propulsion 

effectiveness, reflecting the swimmer’s ability to overcome resistance forces. Energy efficiency, defined as the energy 

cost per unit distance, provides insights into metabolic demands and stroke sustainability. Finally, joint load indicators, 

such as peak torque and cumulative force, are essential for assessing the biomechanical safety of stroke techniques 

[24, 25]. 

The interplay between these indicators highlights the need for multi-objective optimization. For instance, maximizing 

swimming velocity may inadvertently increase joint loads, necessitating a trade-off between performance and safety. 
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Similarly, improving energy efficiency may require adjustments to stroke mechanics that could impact propulsion. Table 

1 summarizes these indicators and their biomechanical significance, emphasizing their role in guiding training and 

technique refinement. 

Table 1. Key Performance Indicators And Their Biomechanical Significance 

Indicator Definition Biological Significance 

Swimming Velocity Speed of forward motion Measure of propulsion effectiveness 

Energy Efficiency Energy cost per unit distance Reflects metabolic efficiency 

Joint Load Peak joint torque during stroke Indicator of injury risk 

3. Non-Dominated Sorting Genetic Algorithm 

3.1. Overview of NSGA-II 

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is a widely adopted evolutionary algorithm for solving 

multi-objective optimization problems (MOPs). It achieves this by simultaneously optimizing multiple conflicting 

objectives, identifying a set of Pareto-optimal solutions that balance trade-offs between objectives [5]. NSGA-II is 

celebrated for its computational efficiency, simplicity, and ability to maintain a diverse set of solutions. The algorithm’s 

core is structured around three main stages: non-dominated sorting, crowding distance calculation, and population 

selection. These components collectively ensure the exploration and exploitation of the solution space, converging the 

population toward a well-distributed Pareto front. 

The first step in NSGA-II is non-dominated sorting, which classifies the population into multiple Pareto fronts. Each 

solution is compared against others in the population to determine whether it is dominated, i.e., if another solution is 

better in at least one objective and no worse in all others. Solutions that are not dominated form the first Pareto front are 

assigned the highest rank. Subsequent fronts are formed by iteratively removing the solutions of higher ranks, ensuring 

hierarchical organization of the population [8]. This sorting mechanism is crucial for identifying candidate solutions that 

contribute to the Pareto-optimal set. 

Following the non-dominated sorting process, NSGA-II calculates the crowding distance for each solution within a 

Pareto front. The crowding distance quantifies the diversity of solutions by measuring the average distance between a 

solution and its neighbors in the objective space. Solutions with larger crowding distances are preferred, as they 

contribute to maintaining a uniformly distributed Pareto front. This metric ensures that the algorithm avoids premature 

convergence to localized regions and explores unexplored areas of the objective space [4]. 

The final stage is population selection, which combines the parent and offspring populations and selects the next 

generation based on rank and crowding distance. Solutions are selected in order of increasing rank, and within the same 

rank, those with higher crowding distances are prioritized. This elitist selection strategy ensures that the algorithm retains 

high-quality solutions while preserving diversity [9]. 

Figure 5 illustrates the algorithm’s workflow, highlighting its iterative nature and the integration of these core 

processes. NSGA-II’s computational efficiency stems from its O(MN 2) complexity, where M is the number of 

objectives and N is the population size. By balancing selection pressure, diversity preservation, and convergence, NSGA-

II has become a benchmark method for multi-objective evolutionary algorithms. 

 

Figure 5. Algorithmic workflow of NSGA-II 
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3.2. Optimization Objectives and Constraints 

In the context of multi-objective optimization using NSGA-II, the definition of clear and quantifiable objective 

functions is essential for guiding the algorithm toward optimal solutions. The physiological boundaries (range of motion, 

ROM; metabolic rate) are set according to the Standards for Range of Motion in Elite Swimmers (2019) issued by the 

Sports Medicine Committee of the Fédération Internationale de Natation (FINA) and the measured data from relevant 

literatures. The knee flexion range is limited to 120°–180° (θmin= 120°, θmax = 180°), and the upper limit of shoulder 

abduction angle is 180°. The metabolic rate boundary is determined based on the oxygen uptake–energy consumption 

conversion model (1 MET = 3.5 ml O₂ /kg/min), combined with the test values of athletes' maximal oxygen uptake 

(VO₂ max). For biomechanical systems, such as swimming performance optimization, the objectives are often 

conflicting, requiring careful trade-offs. This section defines three primary optimization objectives and discusses the 

constraints imposed during the optimization process. 

The first objective is to maximize swimming velocity (𝑣), which directly reflects the swimmer's performance. The 

velocity is calculated as the mean forward speed during a complete stroke cycle and is influenced by both propulsion 

forces and hydrodynamic resistance. Mathematically, this can be expressed as: 

𝑓1 = −𝑣  (3) 

where the negative sign indicates that NSGA-II minimizes this objective, aligning with its minimization framework. 

Maximizing velocity often conflicts with other objectives, such as energy efficiency and joint load, necessitating a multi-

objective approach. 

The second objective is to minimize energy consumption (𝐸) , which ensures long-term sustainability of the 

swimmer's performance. Energy consumption is calculated as the sum of mechanical work (𝑊𝑚) and resistive energy 

losses (𝑊𝑟): 

𝑓2 = 𝐸 = 𝑊𝑚 +𝑊𝑟  (4) 

This objective is critical for endurance swimming, where excessive energy expenditure may lead to premature fatigue. 

The energy model integrates biomechanical and physiological factors, including oxygen uptake and metabolic rates. 

The third objective is to minimize joint load (𝐿), which is crucial for preventing overuse injuries and ensuring 

biomechanical safety. Joint load is quantified as the cumulative torque experienced by key joints (e.g., shoulder, knee, 

and ankle) during a stroke cycle: 

𝑓3 = ∑  𝑛
𝑖=1 𝜏𝑖  (5) 

where 𝜏𝑖 represents the torque at joint 𝑖, and 𝑛 is the total number of joints analyzed. Minimizing joint load is particularly 

relevant for elite swimmers, who often perform repetitive strokes over extended periods. 

The optimization process is subject to several constraints that ensure the feasibility and practicality of the solutions. 

First, joint range of motion (ROM) constraints are applied to prevent unrealistic or injurious movements. For example: 

𝜃min,𝑖 ≤ 𝜃𝑖 ≤ 𝜃max,𝑖  (6) 

where 𝜃𝑖 is the joint angle, and 𝜃min,𝑖 and 𝜃max,𝑖 are the minimum and maximum allowable angles, respectively. These 

constraints are derived from anatomical studies and ensure that the swimmer's movements remain within physiological 

limits. 

Second, hydrodynamic constraints are imposed to account for the interaction between the swimmer's body and the 

surrounding fluid. These include limits on drag force and flow separation, which are modeled using computational fluid 

dynamics (CFD) simulations: 

𝐶𝑑 ≤ 𝐶𝑑,max  (7) 

where 𝐶𝑑 is the drag coefficient, and 𝐶𝑑,max is the maximum allowable value based on swimmer-specific data. Such 

constraints prevent the algorithm from converging to hydrodynamically infeasible solutions. 

Finally, temporal constraints are applied to ensure the synchronization of arm and leg movements during the stroke 

cycle. These constraints are expressed as phase relationships between joint motions, maintaining biomechanical realism. 

Figure 6 summarizes the optimization objectives and constraints within the NSGA-II framework. 

 

Figure 6. Optimization Framework for Velocity, Energy, and Joint Load with Constraints 
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3.3. Implementation in the Biomechanical Model 

The implementation of NSGA-II within the biomechanical model for breaststroke swimming involves integrating the 

optimization algorithm with the computational simulation of swimming dynamics. The biomechanical model provides 

a detailed representation of the swimmer’s motion, incorporating hydrodynamic forces, joint kinematics, and metabolic 

energy consumption. NSGA-II is employed to optimize three conflicting objectives: maximizing swimming velocity, 

minimizing energy expenditure, and minimizing joint load, as described in Section 3.2. 

The optimization process begins with the initialization of a population of candidate solutions, where each solution 

represents a unique combination of stroke parameters, such as joint angles, stroke frequency, and kick amplitude. These 

parameters are encoded as decision variables, with bounds set according to physiological constraints and hydrodynamic 

feasibility. The biomechanical model evaluates each solution by simulating a complete stroke cycle, calculating the 

velocity, energy expenditure, and joint load for use as objective function values. 

The outputs of NSGA-II are a set of Pareto-optimal solutions, which represent trade-offs between the objectives. 

These solutions provide swimmers and coaches with actionable insights for technique refinement. Figure 7 illustrates 

the algorithm’s input-output framework, highlighting the decision variables, constraints, and optimization results. 

 

Figure 7. Input-Output Framework of NSGA-II for Biomechanical Model 

This study aims to optimize breaststroke by improving swimming speed, energy efficiency, and reducing joint load. 

To achieve this, it first defines the optimization problem, then constructs a biomechanical model combining 

hydrodynamics, kinematics, and energy expenditure. Subsequently, a multi - objective optimization based on the NSGA 

- II algorithm is employed to obtain Pareto - optimal solutions. Finally, the model and algorithm are experimentally 

validated using professional swimmers. The NSGA - II algorithm, rooted in evolutionary theory, simulates natural 

selection and genetic processes. Leveraging non - dominated sorting and crowding distance mechanisms, it efficiently 

finds Pareto - optimal solutions for conflicting objectives, ensuring population diversity and fast convergence. Its 

implementation involves initializing the population, evaluating objectives, and iteratively performing sorting, selection, 

crossover, and mutation until termination. To enhance the model's practicality, each participant's body parameters (limb 

length, flexibility, etc.) are measured and integrated into the biomechanical model. This personalization enables precise 

simulation of swimming motions, tailoring optimized techniques to individual athletes' physical traits. 

4. Experimental Validation and Results 

4.1. Experimental Setup 

To validate the biomechanical model and the optimization framework based on NSGA-II, an experimental study was 

conducted with professional breaststroke swimmers. The experimental setup was designed to collect high-resolution 

kinematic, hydrodynamic, and physiological data during swimming, ensuring precise validation of the optimization 

results. 

Ten professional breaststroke swimmers (five male and five female; age: 22±3 years; height: 178 ± 7 cm; weight: 70 

± 5 kg) participated in the experiment. All participants had at least five years of competitive swimming experience and 

were selected based on their proficiency in breaststroke technique and their ability to maintain consistent performance 

across repeated trials. To ensure the reliability of the results, participants with recent injuries or medical conditions 

affecting their swimming performance were excluded. Ethical approval was obtained from the institutional review board, 

and all participants provided informed consent before the study. 

The data collection process employed a combination of advanced measurement systems. Underwater high-speed 

cameras with a resolution of 1920 × 1080 at 120 fps were positioned around the swimming pool to capture the swimmer’s 

motion from multiple angles. These recordings were synchronized with a multi-camera motion capture system, which 
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utilized reflective markers placed on key anatomical landmarks. The motion capture system, with a spatial accuracy of 

±0.5 mm, enabled precise tracking of joint kinematics and body segment movements. Hydrodynamic data were acquired 

using a custom-built waterproof force sensor attached to a tether, which measured drag forces at a sampling rate of 100 

Hz. Additionally, a portable metabolic analyzer was used to measure oxygen consumption, providing estimates of energy 

expenditure during each trial. Figure 8 illustrates the experimental setup, including the placement of cameras, the motion 

capture system, and the force measurement equipment. 

 

Figure 8. Experimental setup showing underwater cameras, motion capture system, and force measurement devices used 

during the swimming trials 

The experimental procedure consisted of three main phases: baseline testing, motion analysis, and optimization 

validation. During baseline testing, swimmers performed warm-up trials to familiarize themselves with the experimental 

setup and ensure consistent swimming performance. Reflective markers were attached to anatomical landmarks, 

including the shoulders, elbows, wrists, hips, knees, and ankles, as shown in Figure 9. These markers were used to track 

joint movements throughout the stroke cycle. 

 

Figure 9. Motion capture system with reflective markers placed on key anatomical landmarks for joint tracking and 

kinematic analysis 

In the motion analysis phase, participants performed five full-stroke swimming trials at a controlled pace, with each 

trial lasting approximately 20 s. The swimmers’ movements were recorded by the underwater cameras and synchronized 

with the motion capture system. To ensure reproducibility, participants maintained a constant stroke frequency and 

avoided unnecessary body movements. The collected data were used to calculate stroke-specific parameters, including 

joint torques, hydrodynamic forces, and energy expenditure. 

Finally, in the optimization validation phase, swimmers executed a series of optimized strokes based on the NSGA-

II outputs. These trials involved adjusting stroke parameters, such as kick amplitude and arm pull trajectory, to match 

the optimization results. The experimental outcomes were compared with the predictions from the biomechanical model 

to assess the accuracy and effectiveness of the optimization framework. 
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4.2. Analysis of Pareto-Optimal Solutions 

The optimization process using NSGA-II generated a set of Pareto-optimal solutions, each representing a unique 

trade-off between swimming velocity, energy consumption, and joint load. These solutions form a Pareto front in the 

objective space, as shown in Figure 10, where no single solution is strictly better than others across all objectives. The 

analysis of the Pareto front provides valuable insights into the performance of trade-offs and helps in selecting the most 

appropriate solution based on specific requirements. 

 

Figure 10. Pareto Front Showing Trade-offs Between Velocity, Energy, and Joint Load 

Sensitivity analysis is conducted to evaluate how changes in input parameters affect the Pareto front. Key parameters 

like joint angles and metabolic rates were varied to observe their impacts on the optimization outcomes. The analysis 

shows that joint angles significantly influence the optimization results, as slight changes can alter the balance between 

swimming velocity and joint load. Metabolic rate primarily affects energy efficiency but has a smaller impact on velocity 

and joint load. This is because joint angles directly relate to mechanical efficiency in swimming, while metabolic rate 

mainly reflects physiological energy consumption differences. 

The Pareto front demonstrates the conflicting nature of the objectives. For instance, maximizing swimming velocity 

often results in increased energy consumption and joint load due to higher propulsion forces and faster stroke cycles. 

Conversely, minimizing energy consumption or joint load typically leads to a reduction in swimming velocity, as lower 

propulsion forces are required to achieve these objectives. This trade-off is evident from the distribution of solutions 

along the Pareto front, where high-velocity solutions are concentrated in one region, while low-energy and low-load 

solutions are concentrated in another. 

The solutions on the Pareto front were further analyzed by selecting representative Pareto-optimal solutions. Table 2 

compares three representative solutions: one focusing on maximum velocity, one prioritizing minimum energy 

consumption, and one minimizing joint load. The solutions are characterized by their corresponding performance 

metrics, including swimming velocity, energy consumption, and joint load. These metrics highlight the trade-offs 

between objectives, as shown in the Table 2. The high-velocity solution achieves the fastest swimming speed of 2.0 m/s, 

but this comes at the cost of a 20% increase in energy consumption and a 15% increase in joint load compared to the 

baseline. On the other hand, the low-energy solution reduces energy consumption by 18% but sacrifices 10% of the 

swimming velocity. The low-load solution achieves a 25% reduction in joint load, which is particularly beneficial for 

injury prevention, but results in a 15% decrease in velocity and a slight increase in energy consumption due to suboptimal 

propulsion efficiency. These trade-offs illustrate the importance of balancing performance, efficiency, and safety in 

swimming biomechanics. 

Table 2. Performance metrics of representative Pareto-optimal solutions 

Solution Type Velocity (m/s) Energy Consumption (J) Joint Load (Nm) 

High-Velocity 2.0 4450 119.9 

Low-Energy 1.8 3700 105 

Low-Load 1.7 3900 90 

The diversity of solutions on the Pareto front highlights the flexibility of the optimization framework in addressing 

different performance goals. For competitive swimmers, high-velocity solutions may be preferred to maximize 

performance during races. However, for training sessions or injury recovery, solutions with lower joint loads or energy 

consumption may be prioritized to ensure long-term sustainability and safety. 
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The Pareto-optimal solutions also provide actionable insights for coaches and athletes. For instance, by analyzing the 
specific stroke parameters (e.g., kick amplitude, stroke frequency) associated with each solution, targeted adjustments 
can be made to achieve desired outcomes. The biomechanical model and NSGA-II framework enable a systematic 

exploration of these trade-offs, facilitating evidence-based decision-making in swimming performance optimization. 

4.3. Comparison with Traditional Training Methods 

The optimization framework based on NSGA-II offers significant improvements over traditional training methods 

by systematically balancing performance, efficiency, and joint safety. This section compares the biomechanical and 
physiological performance metrics of traditional breaststroke techniques with the optimized strokes derived from the 
Pareto-optimal solutions. 

Traditional breaststroke training primarily focuses on maximizing velocity through experience-driven techniques, 
often without quantitatively addressing the trade-offs between energy consumption and joint load. In contrast, the 
optimization framework explicitly considers these trade-offs, enabling swimmers to achieve a more sustainable and 

injury-preventive stroke. 

One of the most noticeable differences lies in joint load distribution during the stroke cycle. Figure 11 shows the joint 
load variation across a complete stroke cycle for traditional and optimized techniques. The optimized technique reduces 
peak joint loads at the shoulder and knee joints by approximately 20%, which is critical for preventing overuse injuries. 
This reduction is achieved by refining stroke parameters, such as kick amplitude and arm pull trajectory, to minimize 
unnecessary stress on the joints while maintaining propulsion efficiency. In traditional techniques, the lack of systematic 

analysis often results in excessive joint loads, particularly during the pull and kick phases. 

 

Figure 11. Joint Load Variation During Stroke Cycle for Traditional vs. Optimized Techniques 

Energy efficiency represents another key advantage of optimized strokes. Figure 12 compares the total energy 

consumption per stroke cycle for traditional and optimized techniques. On average, optimized strokes reduce energy 
consumption by 15%-20%, primarily due to improved hydrodynamic efficiency and more effective movement patterns. 
By adjusting the stroke frequency and kick timing, the optimized technique minimizes energy losses caused by drag 
forces and uncoordinated limb movements. In contrast, traditional training methods often prioritize speed without fully 
accounting for energy efficiency, leading to higher metabolic costs, especially during prolonged swimming sessions. 

 

Figure 12. Comparison of energy consumption per stroke cycle between traditional and optimized techniques 
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In addition to joint load and energy efficiency, the optimized technique demonstrates a more balanced performance 

profile. Swimmers using the optimized strokes reported improved stroke consistency and reduced fatigue during repeated 

trials, suggesting that the optimization framework not only enhances short-term performance but also contributes to 

long-term sustainability. The traditional techniques, by contrast, often lead to inconsistent outcomes due to variations in 

swimmer experience and coaching methods. 

The advantages of the optimized strokes highlight the value of integrating data-driven optimization frameworks into 

swimming training. By systematically analyzing and refining stroke parameters, the optimization framework provides a 

scientific basis for improving performance, reducing injury risks, and enhancing energy efficiency. While traditional 

methods rely heavily on subjective assessments and experience, the proposed approach offers a quantitative and 

reproducible methodology for stroke optimization. 

These findings underscore the potential of combining biomechanical modeling with multi-objective optimization to 

revolutionize traditional training practices. The ability to customize strokes based on individual swimmer profiles further 

enhances the applicability of the framework in real-world training environments. 

5. Discussion 

5.1. Contributions to Training Optimization 

This study advances the field of swimming biomechanics by proposing a systematic and data-driven framework that 

integrates biomechanical modeling with multi-objective optimization to address the complex trade-offs inherent in 

swimming performance. The contributions of this research to training optimization are multifaceted, encompassing 

improvements in training efficacy, injury mitigation, and personalized coaching methodologies. 

A central contribution of this work lies in its ability to enhance training efficiency through the identification of Pareto-

optimal solutions. Traditional training approaches often rely heavily on experiential methods and qualitative 

assessments, which are inherently subjective and may not fully capture the intricate interplay between performance, 

energy efficiency, and joint safety. By contrast, the presented framework employs quantitative optimization techniques 

to systematically explore and resolve trade-offs among these conflicting objectives. This enables the design of targeted 

training interventions that maximize performance outcomes while maintaining biomechanical and physiological balance. 

Consequently, the framework reduces the reliance on trial-and-error in stroke refinement, thereby improving the overall 

efficiency of training regimens. 

Another significant contribution is the framework’s capacity to mitigate the risk of injury associated with repetitive 

high-intensity swimming. Elite swimmers are particularly susceptible to overuse injuries, such as shoulder impingement 

and knee strain, due to the repetitive nature of their training cycles. The analysis of Pareto-optimal solutions demonstrates 

that optimized stroke techniques can reduce peak joint loads by up to 20% compared to traditional breaststroke 

techniques. This reduction is achieved by systematically adjusting stroke parameters, such as joint angles, kick 

amplitude, and stroke frequency, to minimize biomechanical stress while preserving hydrodynamic efficiency. The 

potential to decrease joint loads without adversely affecting performance underscores the framework’s value in 

promoting long-term joint health and sustainability in competitive swimming. 

Furthermore, this study contributes to the growing emphasis on individualized training methodologies by enabling 

the customization of stroke techniques based on an athlete’s unique biomechanical and physiological profile. The 

variability in anatomical structure, joint flexibility, and metabolic capacity among swimmers necessitates a tailored 

approach to training. The proposed optimization framework accounts for these individual differences, allowing for the 

generation of personalized stroke solutions that align with each swimmer’s specific capabilities and constraints. This 

capacity for individualization represents a significant departure from traditional methods, which often adopt a one-size-

fits-all approach to technique training. 

To its technical contributions, the proposed framework bridges the gap between theoretical research and practical 

application in sports science. By visualizing Pareto fronts and quantifying the trade-offs among multiple objectives, the 

framework provides coaches with actionable insights that can be directly translated into practice. These insights enable 

evidence-based decision-making, where training strategies are informed by objective data rather than subjective 

judgment. This aligns with the broader trend in sports science toward integrating computational modeling and 

optimization techniques into practical coaching workflows, thereby fostering a more rigorous and systematic approach 

to performance enhancement. 

The optimization results indicate that increasing swimming speed often leads to higher energy consumption and joint 

loads, while reducing joint loads may compromise swimming speed. The Pareto-optimal solutions from the NSGA - II 

algorithm reveal these trade-offs. The optimized breaststroke techniques enhance speed, boost energy efficiency, and 

cut joint loads, thus lowering injury risks. These findings bear great significance for swimming training. In practical 

terms, selecting an optimal solution requires balancing speed and joint safety based on swimmers' specific situations. 

During pre-competition intensive training, enhancing speed is crucial, so opt for solutions with high velocity and 

moderate joint load. In rehabilitation or long-term training, prioritize joint safety by choosing low-joint-load solutions 

with slightly lower speed. This selection must involve thorough communication with coaches and athletes to align with 

their needs and physical conditions, ensuring a balance between competitive performance and athletic health. 
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5.2. Limitations of the Study 

Despite the advancements presented in this study, certain limitations should be considered when interpreting the 

findings. These limitations stem from the simplifications inherent in the modeling process and the constraints imposed 

by the experimental setup, which may affect the broader applicability of the proposed framework. A primary limitation 

lies in the hydrodynamic modeling assumptions used in the biomechanical analysis. The forces acting on a swimmer are 

influenced by complex factors, such as turbulence, unsteady flow effects, and subtle variations in body posture during 

the stroke cycle. However, the study employs quasi-static approximations and simplified drag force models to make the 

optimization process computationally feasible. While these assumptions enable efficient analysis, they may not fully 

capture the intricate fluid-body interactions that occur during swimming. Incorporating advanced computational fluid 

dynamics (CFD) approaches in future research could provide a more accurate representation of hydrodynamic forces, 

albeit at the cost of increased computational complexity. 

The experimental design also presents limitations related to the scale and diversity of the participant cohort. The 

study involved ten professional swimmers, which, while sufficient for demonstrating the feasibility of the framework, 

may not adequately represent broader swimmer populations. Factors such as variations in body morphology, muscle 

strength, and training background can significantly impact the effectiveness of the optimized stroke techniques. 

Expanding the study to include a larger and more diverse sample, including swimmers of different skill levels, age 

groups, and physiological characteristics, would provide a more comprehensive evaluation of the framework’s 

generalizability and robustness. 

Additionally, the controlled nature of the experimental environment may limit the applicability of the findings to 

real-world swimming scenarios. For instance, the use of tethered force sensors and motion capture systems, while 

essential for precise data collection, does not fully replicate the dynamic conditions experienced during competitive 

swimming. External factors such as race pacing, fatigue, and environmental variability may influence stroke performance 

in ways not accounted for in the experimental setup. Future work could address this issue by employing wearable sensor 

technologies or advanced underwater monitoring systems, enabling data collection in more realistic settings. 

These limitations highlight areas for further refinement in both the modeling and experimental aspects of the study. 

Addressing these issues will enhance the accuracy and applicability of the proposed framework, paving the way for 

broader adoption in swimming biomechanics and beyond. The quasi-steady drag model (Equation 1) may overestimate 

the thrust by approximately 12% during the acceleration phase (compared with transient CFD results). Especially in the 

leg kick acceleration period (t=0.2–0.5 s), the peak thrust error of the simplified model reaches 18%. 

5.3. Future Research Directions 

Building on the findings of this study, several promising avenues for future research can further enhance the 

applicability and impact of the proposed framework. These directions aim to address current limitations, expand the 

scope of application, and incorporate additional factors to improve the comprehensiveness of biomechanical 

optimization. 

One potential direction is the inclusion of psychological and cognitive factors into the optimization framework. 

Swimming performance is influenced not only by biomechanical and physiological parameters but also by psychological 

aspects such as focus, decision-making under pressure, and fatigue perception. Future studies could explore methods to 

integrate these variables by employing psychophysiological models or real-time monitoring of cognitive load during 

swimming. This would allow the development of optimization strategies that account for both physical and mental 

demands, providing a holistic approach to performance enhancement. 

Expanding the framework to other swimming techniques, such as freestyle, backstroke, and butterfly, represents 

another fruitful direction. Each stroke type presents unique biomechanical challenges and hydrodynamic characteristics 

that require tailored optimization strategies. By adapting the current framework to these techniques, researchers can 

investigate stroke-specific trade-offs and provide targeted recommendations for swimmers and coaches. Additionally, 

the framework could be extended to other aquatic sports, such as water polo or synchronized swimming, where 

biomechanical efficiency and injury prevention are equally critical. 

Beyond swimming, the proposed methodology has the potential to be generalized to other sports and physical 

activities. For example, multi-objective optimization could be applied to running, cycling, or rowing, where similar 

trade-offs between performance, energy efficiency, and injury risk are present. Adapting the framework to land-based 

or hybrid sports would require modifications to the biomechanical models but could offer valuable insights into 

optimizing performance across a wide range of athletic disciplines. 

Future research should explore integrating real-time feedback systems into the optimization framework. Current data 

suggests non-elite swimmers could achieve more significant improvements in speed and energy efficiency, while 

rehabilitating swimmers prioritize joint load reduction. Thus, future studies should expand to these populations to 

validate the model's applicability. Integrating this optimization framework with wearable feedback systems presents 

significant potential. Incorporating psychological parameters (e.g., perceived exertion, stress) via psychophysiological 

modeling and real-time monitoring can enhance training strategies. Adding metrics like psychological resilience and 
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cognitive load stabilizes competitive performance by mitigating stress-related underperformance, creating a holistic 

model for physical and mental optimization. Wearable sensors could monitor real-time motion parameters, feeding data 

into the model to dynamically adjust optimization plans and provide instant feedback. Despite challenges in data 

precision and real-time processing, this integration enables personalized, real-time training optimization with broad 

applications. Leveraging wearable tech, computer vision, or AI, athletes can receive immediate technique feedback for 

in-session dynamic optimization, bridging the gap between theory and practice. Such advancements will advance sports 

biomechanics, offering deeper insights into swimming and other athletic domains. 

6. Conclusion 

This study successfully applied a multi-objective optimization framework, based on the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II), to optimize breaststroke swimming techniques by simultaneously addressing 

performance enhancement, energy efficiency, and joint safety. The integration of biomechanical modeling with advanced 

optimization algorithms represents a significant step forward in the scientific analysis and improvement of swimming 

techniques. 

The optimized stroke solutions identified by the framework demonstrated substantial improvements in swimming 

performance metrics. By refining key parameters such as stroke frequency, kick amplitude, and arm pull trajectory, 

swimmers were able to achieve higher propulsion efficiency while maintaining biomechanical balance. These 

improvements were accompanied by a 15%-20% reduction in energy consumption per stroke cycle compared to 

traditional techniques, highlighting the efficacy of the proposed approach in addressing the metabolic demands of 

swimming. Furthermore, the optimization framework successfully reduced peak joint loads, particularly in the shoulder 

and knee regions, by up to 20%, mitigating the risk of overuse injuries that are common among elite swimmers. These 

results underscore the potential of multi-objective optimization to balance competing objectives in complex 

biomechanical systems, achieving sustainable performance improvements without compromising joint health. Our 

findings are in line with prior swimming biomechanics optimization studies. But most past studies focused on single - 

objective optimization. This study, via the NSGA - II algorithm, achieves multi-objective optimization of swimming 

speed, energy efficiency, and joint load. Compared to traditional methods, our optimized techniques are more effective 

in reducing joint loads, probably because the NSGA - II algorithm better balances conflicting objectives. Also, our 

experimental validation confirms the practical value of the optimized techniques. 

Beyond the specific context of breaststroke optimization, this study provides a novel methodological contribution to 

the broader field of sports biomechanics. The proposed framework establishes a quantitative, data-driven approach to 

motion analysis and performance enhancement, offering a powerful alternative to traditional training methods that often 

rely on qualitative assessments. By visualizing Pareto-optimal solutions, the framework enables coaches and athletes to 

make informed decisions tailored to individual performance goals and physical constraints. This personalized and 

evidence-based approach aligns with the growing emphasis on precision training in competitive sports. 

The implications of this research extend beyond swimming to other athletic disciplines. The methodology can be 

adapted to optimize techniques in various sports where trade-offs between performance, energy efficiency, and injury 

risk are critical, such as running, cycling, or rowing. Additionally, the ability to incorporate individual biomechanical 

and physiological characteristics into the optimization process highlights the potential for widespread application across 

diverse athlete populations and skill levels. 

This study demonstrates the feasibility and efficacy of multi-objective optimization in enhancing athletic performance 

while addressing safety and efficiency concerns. The integration of computational biomechanics with advanced 

optimization algorithms offers a robust and scalable framework for technique refinement, paving the way for future 

innovations in sports science and training methodologies. 
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