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Abstract 

Introduction: Analysis of multimodal medical images often requires the selection of one or many anatomical regions of 

interest (ROIs) for extraction of useful statistics. This task can prove laborious when a manual approach is used. We have 

previously developed a user-friendly software tool for image-to-image translation using deep learning. Therefore, we 

present herein an update to the DeepImageTranslator V2 software with the addition of a tool for multimodal medical image 

segmentation analysis (hereby referred to as the MMMISA). Methods: The MMMISA was implemented using the Tkinter 

library; backend computations were implemented using the Pydicom, Numpy, and OpenCV libraries. We tested our 

software using 4188 slices from whole-body axial 2-deoxy-2-[18F]-fluoroglucose-position emission tomography/ 

computed tomography scans ([¹⁸F]-FDG-PET/CT) of 10 patients from the American College of Radiology Imaging 

Network-Head and Neck Squamous Cell Carcinoma (ACRIN-HNSCC) database. Using the deep learning software 

DeepImageTranslator, a model was trained with 36 randomly selected CT slices and manually labelled semantic 

segmentation maps. Utilizing the trained model, all the CT scans of the 10 HNSCC patients were segmented with high 

accuracy. Segmentation maps generated using the deep convolutional network were then used to measure organ specific 

[¹⁸F]-FDG uptake. We also compared measurements performed using the MMMISA and those made with manually 

selected ROIs. Results: The MMMISA is a tool that allows user to select ROIs based on deep learning-generated 

segmentation maps and to compute accurate statistics for these ROIs based on coregistered multimodal images. We found 

that organ-specific [¹⁸F]-FDG uptake measured using multiple manually selected ROIs is concordant with whole-tissue 

measurements made with segmentation maps using the MMMISA tool. 
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1. Introduction 

Analysis of multimodal medical images (e.g., position emission tomography/magnetic resonance imaging 

[PET/MRI] and PET/computed tomography [PET/CT]) often requires the selection of one or many anatomical regions 

of interest (ROIs) for extraction of useful statistics [1-7]. The use of spherical or ellipsoid ROIs may be sufficient for 

large organs such as the liver and large muscle groups. However, for organs/tissues with complex shapes (e.g., the 

intestines and adipose tissues), manual ROI segmentation is not a scalable approach. One possible method is the use of 
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deep learning for automated segmentation. Nevertheless, most deep learning pipelines for semantic image segmentation 

generate color-coded segmentation maps stored as image files, while most free software programs for medical image 

analysis (e.g., 3D-Slicer, OsiriX Lite, and AMIDE) cannot use these files to generate ROI statistics of multimodal images 

stored as DICOM files. 

We have previously developed a user-friendly software tool for image-to-image translation using deep learning 

(DeepImageTranslator, released at: https://sourceforge.net/projects/deepimagetranslator/) [8]. Therefore, we present 

herein an update to the DeepImageTranslator software with the addition of a tool for multimodal medical image 

segmentation analysis (hereby referred to as the MMMISA). We then demonstrate the use of the program for the 

measurement of 2-deoxy-2-[18F]fluoroglucose ([¹⁸F]-FDG) uptake by the lungs and subcutaneous adipose tissue using 

whole-body [¹⁸F]-FDG-PET/CT scans from the ACRIN-HNSCC-FDG-PET/CT database [9-11]. Furthermore, we also 

compare measurements performed using the MMMISA and those made with manually selected ROIs. 

2. Methods 

2.1. Development of the MMMISA Program 

The MMMISA program presented herein was written in Python 3.8 and distributed under the GNU General Public 

License (version 3.0). The graphical user interface was developed using the Tkinter library, which is the most commonly 

used Python package for graphical user interface creation. Image analysis algorithms were implemented using the 

Pydicom, Numpy, and OpenCV libraries. The program is included as part of version 2 of the DeepImageTranslator 

software (https://sourceforge.net/projects/deepimagetranslator/) and is also available as a standalone program 

(https://sourceforge.net/projects/mmmisa/) for Windows. The source codes are available at: 

(https://github.com/runzhouye/MMMISA). 

2.2. PET/CT Image Dataset 

Whole-body CT and FDG-PET images from 10 patients (numbers 001, 002, 003, 007, 008, 010, 012, 018, 019, and 

027—which were the first 10 whole-body scans with the same windowing and devoid of significant radiographic 

artifacts) were downloaded from the ACRIN-HNSCC-FDG-PET/CT (ACRIN 6685) database [9, 10] via the Cancer 

Institute Archive [11]. We arbitrarily chose the ACRIN-HNSCC-FDG-PET/CT database since it was one of the few 

databases that contain coregistered whole-body PET and CT scans. 

2.3. Manual Extraction of Multimodal Image Data 

CT and FDG-PET images were loaded into the AMIDE software [12]. For each patient, 11 spherical ROIs (10 mm 

diameter) in the subcutaneous adipose tissue and 3 spherical ROIs (50 mm diameter) in the lungs were drawn at different 

axial positions based on whole-body CT images. ROI statistics were subsequently generated for the coregistered PET 

images. 

2.4. Semantic Image Segmentation 

Thirty-six axial slices were randomly chosen from the 4188 axial CT images from the 10 patients for manual semantic 

segmentation with the GIMP (GNU Image Manipulation Program) software of the background, lungs, bones, brain, 

subcutaneous and visceral adipose tissue, and other soft tissues by labelling these regions in black (RGB=[0,0,0]), yellow 

(RGB=[255,255,0]), white (RGB=[255,255,255]), cyan (RGB=[0,255,255]), red (RGB=[255,0,0]), green 

(RGB=[0,255,0]), and blue (RGB=[0,0,255]). Thirty-six training samples were considered more than sufficient since we 

have previously shown that models can be trained to achieve high accuracy with as little as 17 images [13]. CT image-

segmentation map pairs were then loaded into the DeepImageTranslator software to train a deep convolutional neural 

network as previously described in Ye et al. [13] with 1000 training epochs. The final model was used to perform 

automatic semantic segmentation of the 4188 axial CT images from the 10 patients in less than 10 minutes. The 

generalizability of such an approach for automated segmentation has previously been shown to be excellent [13]. 

2.5. Automated Extraction of Multimodal Image Data 

For each patient, the original PET/CT scans were loaded into the MMMISA program along with the semantic 

segmentation maps produced by the convolutional neural network. In this study, we chose to extract FDG uptake from 

the lungs and subcutaneous adipose tissue by extracting regions of the model-generated segmentation maps containing 

yellow and red pixels, respectively using the MMMISA program. Lower and upper color threshold were set at (R,G,B) 

= (150,150,0) and (R,G,B) = (255,255,150), respectively, for the lungs, and (R,G,B) = (150,0,0) and (R,G,B) = 

(255,150,150), respectively, for the subcutaneous adipose tissue. ROI statistics were then generated for the FDG-PET 

scans using the MMMISA software. 

https://sourceforge.net/projects/deepimagetranslator/
https://sourceforge.net/projects/mmmisa/
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2.6. Statistical Analyses 

Statistical analyses were carried out using GraphPad Prism version 9. Pearson’s R values were computed for the 

correlation between organ-specific FDG uptakes measured using multiple manually selected ROIs and FDG uptake 

determined using deep learning-generated segmentation maps. 

3. Results 

3.1. The MMMISA Plugin for the DeepImageTranslator 

The MMMISA program is included in version 2 of the DeepImageTranslator and is also available as a standalone 

software. The main window (Figure 1) allows for the user to visualize single- and dual-modality images written in the 

standard DICOM (Digital Imaging and Communications in Medicine) file format, the most commonly used file format 

in medical imaging. When images from a second modality are loaded into the program, they are automatically matched, 

along with the corresponding segmentation map, to the image of the first modality that is being currently displayed. 

When necessary, the program also performs image registration of modality 2 images based on modality 1 images through 

translation and/or stretching such that objects in both image sets overlap. This allows for simultaneous visualization of 

both image sets and segmentation maps. 

 

Figure 1. Main window of MMMISA, showing (from left to right), modality 1 (CT) images, segmentation maps generated 

with convolutional neural network, and modality 2 (PET) images 

A second, ROI selection, window (Figure 2) displays user settings for the extraction of ROIs based on pixel colors 

of the segmentation maps. Specific regions of the color-coded semantic segmentation maps can be extracted by setting 

lower and upper thresholds for the red, green, and blue color component values using the ROI selection window. The 

user can also choose to only include the left or right side of the patient for analysis, which can be useful in order to 

exclude the strong signals from of certain radiotracers injected into the left or right arm. When the “Apply” button is 

pressed, ROIs are generated based on the color thresholds using the segmentation maps and applied to corresponding 

slices of modality 1 and 2 images. The cropped images are then displayed in the main window for visualization. 

 

Figure 2. ROI selection window and main window with updated modality 1 and 2 images 
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When “Save analysis” is selected, data will be extracted from modality 1 and 2 images, including the name of the 

scan, time at which each slice was produced, position of image slices, total area of the ROIs on each slice, total pixel 

values in the ROIs, average and standard deviation of values of pixels inside the ROIs, and pixel size. Results are then 

written in an excel file and stored under the user-designated directory. 

3.2. Semantic Segmentation of PET/CT Images 

Segmentation results for images outside of the training set obtained with the convolutional neural network trained 

using the DeepImageTranslator were illustrated in Figure 3. Our final model was able to accurately segment the lungs, 

brain, bone, subcutaneous and visceral adipose tissue, and other soft tissues. 

 

 

 

Figure 3. Pairs of CT images outside of the training set and sematic segmentation maps generated with deep convolutional 

neural network. The background, lungs, bones, brain, subcutaneous and visceral adipose tissue, and other soft tissues were 

labelled in black, yellow, white), cyan, red, green, and blue, respectively. 

Increase in number of manually selected ROIs increases accuracy of organ-specific FDG uptake approximations 

compared to true organ-specific FDG uptake measured using deep learning-generated segmentation maps. 

Next, we tested the concordance of organ-specific FDG uptake measured using multiple manually selected ROIs 

versus FDG uptake determined using deep learning-generated segmentation maps. In general, regardless of the number 

of ROIs used, manually measured FDG uptake in the lungs and subcutaneous adipose tissue was well correlated with 

that calculated with segmentation maps using the MMMISA program (Figure 4). For subcutaneous adipose tissue FDG 

uptake, the correlation coefficient and the -log of the P-value increased sharply once values from more than 4 ROIs were 

combined (Figure 4-a). The increase in measurement accuracy (determined by the correlation coefficient) through 

increasing numbers of manually selected ROIs plateaued after more than 8 ROIs were used. Nevertheless, the P-value 

of the correlation between manual measurement and that using segmentation maps continued to decrease when more 

ROIs were used (Figure 4-b). Similar results were obtained for the measurement of FDG uptake in the lungs (Figures 4-

c and 4-d). 
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Figure 4. Correlation coefficient (A and C) and P-value (B and D) for the association between organ-specific FDG uptake 

measured using multiple manually selected ROIs and FDG uptake determined using deep learning-generated segmentation 

maps, as a function of number of manually selected ROIs, for the subcutaneous adipose tissue (A and B) and lungs (C and D). 

ROI: region of interest. 

4. Summary and Conclusion 

In recent years, numerous open-source software tools have been reported in the field of medical image processing 

[14-18]. One growing area of development is the popularization of deep learning methods through the creation of user-

friendly tools with a graphical interface. Nevertheless, most deep learning pipelines for semantic image segmentation 

generate color-coded segmentation maps stored as image files, while most free software programs for medical image 

analysis cannot use these files to generate ROI statistics of multimodal images stored as DICOM files. 

Nonetheless, selection of ROIs is an important aspect of in vivo metabolic studies involving PET/CT imaging [19-

22]. In particular, measurements of volume and radiotracer uptake of adipose tissues of different regions may prove to 

be important for future studies on the metabolic syndrome, as hypertrophic obesity is related to changes in adipose tissue 

distribution and alterations in metabolic endpoints [23, 24]. 

Therefore, we have presented herein an update to the DeepImageTranslator software [8] by including a tool for 

multimodal medical image segmentation analysis based on semantic segmentation maps generated using a deep 

convolutional neural network. Our program can be accessed through a graphical interface and allows users to extract 

ROI statistics of multimodal images (e.g., PET/CT and PET/MRI) based on color-coded semantic segmentation maps. 

We showed that organ-specific FDG uptake measured using multiple manually selected small, spherical ROIs is 

concordant with whole-tissue measurements made with segmentation maps using the MMMISA program. Furthermore, 

we found that increase in number of manually selected ROIs increases the accuracy of organ specific FDG uptake 

approximations. Therefore, our pipeline constitutes a simple, automated, and scalable approach to obtain ROI statistics 

using multimodal scans. Although the accuracy of the neural network would never surpass the accuracy of manually 

labelled segmentation maps used for model training, our approach would eventually greatly simplify the task of 

researchers and radiologists performing whole-body semantic segmentation of multimodal tomography data. 
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