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Abstract 

With the development of technology, posture recognition methods have been applied in more and more fields. However, 

there is relatively little research on posture recognition in dance. Therefore, this paper studied the capture and posture 

recognition of dance movements to understand the usability of the proposed method in dance posture recognition. Firstly, 

the Kinect V2 visual sensor was used to capture dance movements and obtain human skeletal joint data. Then, a three-

dimensional convolutional neural network (3D CNN) model was designed by fusing joint coordinate features with joint 

velocity features as general features for recognizing different dance postures. Through experiments on NTU60 and self-

built dance datasets, it was found that the 3D CNN performed best with a dropout rate of 0.4, a ReLU activation function, 

and fusion features. Compared to other posture recognition methods, the recognition rates of the 3D CNN on CS and CV 

in NTU60 were 88.8% and 95.3%, respectively, while the average recognition rate on the dance dataset reached 98.72%, 

which was higher than others. The experimental results demonstrate the effectiveness of our proposed method for dance 

posture recognition, providing a new approach for posture recognition research and making contributions to the inheritance 

of folk dances. 
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1. Introduction 

With the continuous updating and progress of multimedia technology, music and video files have become 

increasingly important forms for carrying and disseminating information in addition to text and images. This has led to 

an increasing amount of data on the network, making the processing of these files more complex. Video files have a 

wide range of applications in security monitoring, intelligent navigation, etc. [1]. In order to effectively utilize these 

video files, computer vision technology is gradually developing [2]. The term “computer vision” refers to the use of 

computers for analyzing and recognizing human movements and postures in video files, supporting research in areas 

such as motion analysis and human-computer interaction. With continuous advancements in sensor technology, various 

sensors can be used to capture human movements [3], acquire a large amount of data on human behavior, and analyze 

this data to achieve recognition of different postures [4]. 

Currently, numerous methods have been applied for analyzing human movements [5]. Balmik et al. [6] designed a 

7-layer 1D convolutional neural network to achieve the recognition of human movements. The experimental results 
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showed that it achieved an accuracy rate of 95%, outperforming the hidden Markov model. Pribadi et al. [7] used 

wearable sensors to collect hand movement data from welders, extracted features such as spectral peaks and spectral 

power, and employed a multilayer perceptron for recognition. The results showed that this algorithm accurately 

recognized welders' hand movements. Rotoni et al. [8] used MPU-6050 triaxial accelerometers to collect limb data from 

infants and identified irregular limb movements associated with cerebral palsy. Asmaul Husna et al. [9] converted 

students’ gymnastics learning videos into digital images, employed Histogram of Oriented Gradients (HOG) to recognize 

students in frames, and used Principal Component Analysis (PCA) to distinguish various gymnastics movements. The 

experimental results showed that this method achieved a 96.09% accuracy rate.  

Li et al. [10] investigated the effectiveness of M-mode ultrasound in identifying wrist and finger movements in the 

human body. Thirteen movements were tested on eight subjects, and a support vector machine (SVM) and a 

backpropagation neural network (BPNN) were used to classify the movements. The results showed that the average 

classification accuracy of the SVM classifier and the BPNN classifier using M-mode ultrasound reached 98.83 ± 1.03% 

and 98.70 ± 0.99%, respectively. In another study, Liu et al. [11] discussed the design and implementation of a human 

motion capture system based on microelectro mechanical systems and Zigbee network. Testing revealed that this method 

could accurately recognize human motion states, with an efficiency improvement of 10% compared to existing research, 

along with an increase in accuracy by nearly 15%.  

Kurban et al. [12] utilized motion sequence information from masked depth video streams obtained from RGB-D 

data for action recognition and tested the proposed method on BodyLogin, NATOPS, and SBU Kinect datasets, finding 

that it provided higher performance and better motion representation. Ding et al. [13] introduced a temporal segment 

graph convolutional network that divides the entire skeleton sequence into different sub-sequences for recognition and 

demonstrated the effectiveness of this approach through experiments on the NTU-RGB+D and Kinetics datasets. Li et 

al. [14] developed a detection model using the You Only Look Once v5 algorithm and integrated it with the Openpose 

algorithm to recognize safe and unsafe human behaviors in videos. They achieved an accuracy of 0.9467 in experimental 

settings. Under the influence of rapid social development and change, dance, especially folk dance, faces increasing 

challenges in preservation and inheritance. The teaching of folk dance has important practical value for better recording 

and protecting folk dances and promoting their dissemination and inheritance. 

However, in current folk dance teaching, students often learn by watching videos or receiving one-on-one guidance 

from teachers, resulting in low efficiency. If posture recognition technology can be applied to folk dance training, it 

would have certain significance for the teaching and training of folk dances. However, in the current field of posture 

recognition, although there is some involvement with sports, there is little research on folk dance. Moreover, motion 

capture methods based on wearable sensors can also affect the execution of dance movements. Therefore, posture 

recognition for folk dance poses a high level of difficulty. This article proposes a method for capturing folk dance 

movements based on Kinect visual sensors. Features were extracted from human skeletal joint data, and a three-

dimensional convolutional neural network (3D CNN) model was used to classify different dance postures. Experimental 

analysis proved the effectiveness of this method for recognizing dance postures, providing a reference for the application 

of Kinect visual sensors and posture recognition technology in teaching folk dances as well as contributing to the 

protection and inheritance of folk dances. 

2. Dance Movement Capture Based on the Kinect Vision Sensor 

Visual sensors can capture human movements through cameras [15] and recognize posture. In this paper, the Kinect 

visual sensor was used for dance motion capture. Unlike other motion sensors, the Kinect visual sensor does not require 

attachment to the body for human-computer interaction. The Kinect V2 sensor [16] was used in this study. Compared 

with V1, V2 can capture information about 25 three-dimensional skeletal points, accommodate up to six people, and 

offer enhanced interactivity. The Kinect V2 SDK is a development package used in conjunction with Visual Studio 2012 

or later compilers. It can be connected to a computer via USB to access data sources such as color, depth, and skeletal 

data from the Kinect device, which is convenient for developers conducting research. Therefore, in the Windows 10 

environment, combined with Visual Studio 2017, the SDK development package, and the Kinect V2 visual sensor, this 

paper used the C# programming language to study dance movement capture and posture recognition methods by 

accessing the Kinect V2 data. 

Kinect V2 is capable of providing 3D coordinate information for 25 skeletal joints at a rate of 30 frames per second, 

as shown in Figure 1 and Table 1. 
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Table 1. Names of the 25 skeletal joint points 

0 Spine base 8 Shoulder right 16 Hip right 

1 Spine mid 9 Elbow right 17 Knee right 

2 Neck 10 Wrist right 18 Ankle right 

3 Head 11 Hand right 19 Foot right 

4 Shoulder left 12 Hip left 20 Spine shoulder 

5 Elbow left 13 Knee left 21 Hand tip left 

6 Wrist lest 14 Ankle left 22 Thumb left 

7 hand left 15 Foot left 23 Hand tip right 

    24 Thumb right 

20
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Figure 1. 25 skeletal joint points 

Kinect V2 captures the body target through camera-based skeleton joint point tracking, converts it into a depth image, 

and then utilizes the skeleton tracking system. The SDK provides body tracking which is used to eliminate the 

background outside of the human body in order to obtain a grayscale image. A random forest algorithm is employed to 

identify human body parts and connect joint points for positioning skeletal points. Finally, skeletal points are connected 

to create a model of the human body’s skeletal joint points. 

This paper examines the recognition of various dance gestures in the folk dance "Drolma" using the Kinect V2 visual 

sensor to capture movements. The study collected movement data from 100 dancers who were skilled in "Drolma", with 

each dancer performing the dance three times and three postures captured for subsequent posture recognition. Figures 2 

to 4 show skeletal point data from three postures collected from a specific dancer. 
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Figure 2. The first gesture of “Drolma” 

 

Figure 3. The second gesture of “Drolma” 
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Figure 4. The third gesture of “Drolma” 

3. The Convolutional Neural Network-Based Posture Recognition Method 

The human skeletal data is represented by joint coordinates. To improve the effect of dance posture recognition, this 

article incorporates joint velocity features in addition to joint coordinates as input for the subsequent pose recognition 

algorithm. It is assumed that in the skeleton sequence data acquired by Kinect V2, all joint points of the skeleton in each 

frame are represented as: 𝑉 = {𝑋𝑡
𝑐|𝑡 = 1,2,⋯ , 𝑇; 𝑐 = 1,2,⋯ , 𝑉}, where 𝑋𝑡

𝑐 refers to the 𝑐-th joint point of the 𝑡-th frame, 

the 3D position coordinates of 𝑋𝑡
𝑖 can be written as: 𝑝𝑡,𝑖 = (𝑥𝑡,𝑖 , 𝑦𝑡,𝑖, 𝑧𝑡,𝑖)

𝑇
. Then, its joint velocity can be written as: 

𝑣𝑡,𝑖 = 𝑝𝑡,𝑖 − 𝑝𝑡−1,𝑖 = (𝑥𝑡,𝑖 − 𝑥𝑡−1,𝑖, 𝑦𝑡,𝑖 − 𝑦𝑡−1,𝑖, 𝑧𝑡,𝑖 − 𝑧𝑡−1,𝑖)
𝑇
  (1) 

where 𝑝𝑡−1,𝑖 is the coordinates of joint point 𝑋𝑡−1
𝑖  of the 𝑡-th frame. 

The position and velocity features of the skeletal joints were mapped into a high-dimensional space by two fully 

connected (FC) layers, yielding 𝑝𝑡,𝑖̂ and vt,î. Taking the joint position as an example, the operation is as follows: 

𝑝𝑡,𝑖̂ = 𝜎 [𝑊2 (𝜎(𝑊1𝑝𝑡,𝑖 + 𝑏1)) + 𝑏2]  (2) 

where 𝜎 is the RELU activation function, 𝑊1 and 𝑊2 are the weights of the two FC layers, and 𝑏1 and 𝑏2 are biases. 

After fusing these two features, the general feature of the input to the posture recognition algorithm is obtained: 

𝑧𝑡,𝑖 = 𝑝𝑡,𝑖̂ + 𝑣𝑡,𝑖̂  (3) 

A CNN was used for posture recognition. CNN is a kind of network featured by local connectivity and weight sharing 

[17], which has various applications in image and video processing [18]. In video processing, temporal features are also 

crucial in addition to spatial features. To fully utilize the spatio-temporal feature information in the Kinect V2 skeletal 

data, this paper employed a 3D CNN. In a 3D-CNN, the calculation formula of 𝑉𝑖𝑗
𝑥𝑦𝑧

 of coordinates (𝑥, 𝑦, 𝑧) in the 𝑗-th 

feature map of the 𝑖-th layer is: 

𝑉𝑖𝑗
𝑥𝑦𝑧

= 𝑓 (𝑏𝑖𝑗 + ∑ ∑ ∑ ∑ 𝜔𝑖𝑗𝑟
𝑙𝑚𝑛𝑛𝑖−1

𝑛=0
𝑚𝑖−1
𝑚=0

𝑙𝑖−1
𝑙=0𝑟 𝑣(𝑖−1)𝑟

(𝑥+𝑙)(𝑦+𝑚)(𝑧+𝑛)
)  (4) 

where 𝜔𝑖𝑗𝑟
𝑙𝑚𝑛 is the value of the convolution kernel connecting the 𝑚-th feature map in the previous layer, 𝑛𝑖 is the time 

dimension of the convolution kernel, and 𝑓 is the activation function. The following activation functions are often 

employed. 
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(1)  Sigmoid function: f(x) =
1

1+e−x
 

(2) 𝑡𝑎𝑛ℎ function: tanh(x) = 2σ(2x) − 1 

(3) RELU function: f(x) = max(0, x) 

The process of 3D pooling is similar to 2D pooling, except that a time dimension, i.e., the number of image frames. 

The formula for maximum pooling is written as: 

𝑉𝑥,𝑦,𝑧 = max
0≤𝑖≤𝑠1,0≤𝑗≤𝑠2,0≤𝑘≤𝑠3

(𝑂𝑥×𝑠+𝑖,𝑦×𝑡+𝑗,𝑧×𝑟+𝑘)  (5) 

where 𝑉𝑥,𝑦,𝑧 is the pooling output, 𝑠, 𝑡, and 𝑟 are the sampling step length in three directions, and 𝑂 is the 3D input vector. 

Finally, the classification of the model was implemented in the Softmax layer, ensuring that the probability of the 

correct category converges to 1 and that the sum of all category probabilities is 1. The overall flow of the designed dance 

posture recognition method is illustrated in Figure 5. 

Kinect V2 

visual sensor

3D 

convolutional 

neural 

network

NTU60 dataset

Self-built dance 

dataset

Recognition 

results

Joint coordinate 

feature

Joint velocity 

feature

General feature

 

Figure 5. The flow of dance posture recognition 

The model parameters of the 3D CNN for dance posture recognition are listed in Table 2. 

Table 2. 3D CNN model parameters 

Network layer Size 

Convolutional layer 3×3×3 

Convolutional layer 3×3×3 

Maximum pooling 2×2×2 

Convolutional layer 3×3×3 

Convolutional layer 3×3×3 

Maximum pooling 2×2×2 

FC layer 1×2048 

FC layer 1×512 

4. Results and Analysis 

The model was implemented on the Python 3.6 platform using the Keras deep learning framework. The 3D CNN was 

trained using the Adam optimizer and the cross-entropy loss function, with an initial learning rate of 0.001 and a total of 

120 iterations. Experiments were conducted on two datasets to evaluate the effectiveness of the 3D CNN posture 

recognition method. 

(1) NTU60 RGB+D dataset [19]: the data are collected from Kinect V2 and used to evaluate the human skeletal 

behavior recognition model. It consists of 60 categories of movements performed by 40 actors. The dataset 

evaluation includes two types: ① cross-subject (CS), where the training and test sets are divided according to 

actor ID; ② cross-view (CV), where the training and test sets are divided based on camera viewpoint. 

(2) Self-built folk dance dataset: the data are collected from Kinect V2, as described in the section on dance movement 

capture based on the Kinect vision sensor. It consists of three postures performed by 100 dancers. As the dance 

was repeated three times, there were a total of 900 samples. The training and test sets were randomly divided 

according to 2:1. 

The algorithm was evaluated in terms of the recognition rate: 

𝑎𝑐𝑐 =
𝑁𝑐

𝑁
× 100%  (6) 

where 𝑁 is the total number of postures in the dataset and 𝑁𝑐 is the number of postures correctly identified by the 

algorithm. 

To prevent overfitting, a dropout layer was added after the first CNN layer with varying dropout rates of 0.2, 0.3, 0.4, 

0.5, 0.6, and 0.7 to compare recognition rates on the NTU60 RGB+D. The results are demonstrated in Table 3. 
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Table 3. Effect of the dropout rate on recognition rate 

 0.2 0.3 0.4 0.5 0.6 0.7 

CS/% 86.77 87.91 88.73 88.55 86.71 81.26 

CV/% 88.12 91.24 95.15 94.71 94.32 93.48 

From Table 3, it can be observed that the recognition rates of the algorithm varied with changes in dropout rate. 

Comparing the results, when the dropout rate was set to 0.4, the algorithm achieved the highest recognition rates on both 

NTU60 RGB+D datasets, reaching 88.73% and 95.15% respectively. This indicated that the algorithm performed 

optimally at this dropout rate. Therefore, a dropout rate of 0.4 will be used in subsequent experiments. 

To determine the most suitable activation function, the recognition rates under different activation functions were 

compared, and the results are presented in Figure 6. 

 

Figure 6. The effect of the choice of activation function on the recognition rate 

From Figure 6, the recognition rate of the 3D CNN for CS was 86.1% with sigmoid activation function and 87.7% 

with 𝑡𝑎𝑛ℎ, indicating an improvement of 1.6%. However, when using ReLU as the activation function, the recognition 

rate increased to 88.8%, which was 2.7% higher than both sigmoid (2.7%) and 𝑡𝑎𝑛ℎ (1.1%). Then, for the CV, the 

recognition rates of the three activation functions were as follows: sigmoid < 𝑡𝑎𝑛ℎ < ReLU. The recognition rate of 

ReLU was 95.3%, which was 3.7% higher than that of sigmoid and 2.1% higher than that of 𝑡𝑎𝑛ℎ. Among these 

activation functions, sigmoid has a non-zero mean output, making it prone to the problem of gradient dispersion, while 

𝑡𝑎𝑛ℎ has a zero mean output, resulting in a higher recognition rate. As a piecewise function, Relu does not suffer from 

gradient dispersion and converges quickly. Therefore, it was used as the activation function in the following experiments. 

 Table 4 shows the results on the NTU60 dataset, taking into account the impact of input features on the 3D CNN. 

Table 4. The impact of input features on the recognition rate 

 CS/% CV/% 

Using the joint coordinate feature only 77.9 84.2 

Using the joint velocity feature only 78.2 85.3 

General feature 88.8 95.3 

From Table 4, it can be observed that when using only a single feature as the input for the 3D CNN, the recognition 

rate of the algorithm was relatively low. However, when using the general feature as the input feature, there was a 

significant improvement in the recognition rate of the algorithm, which was about 10% higher than that of a single 

feature. This proved the reliability of the proposed feature fusion method and its ability to extract more features from 

human skeletal joint data to improve recognition accuracy. 
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The trained 3D CNN successfully recognized different folk dance postures, and the recognition rates for each posture 

are shown in Figure 7. 

 

Figure 7. Recognition rate of 3D CNN for different postures in the dance set 

From Figure 7, it was found that the recognition rate of the self-built folk dance dataset using the 3D CNN was high, 

exceeding 95%. Among these postures, posture 2 achieved the highest recognition rate of 99.03%, while posture 3 had 

the lowest recognition rate of 98.36%. The average recognition rate for these three postures was calculated at 98.72%. 

In comparison to the NTU60 dataset, the dance set exhibited a higher recognition rate with the use of the 3D CNN model. 

This could be attributed to two factors: firstly, there were fewer categories of postures in the dance set; secondly, their 

complexity level was relatively lower. 

To further demonstrate the performance of the 3D CNN for posture recognition, it was compared with other methods: 

(1) Spatial-temporal graph convolutional network (ST-GCN) [20], 

(2) Attention enhanced graph convolutional LSTM network (AGC-LSTM) [21], 

(3)  Two-stream adaptive graph convolutional network (2s-AGCN) [22], 

(4) Semantics-guided neural network (SGN) [23]. 

The comparison results of these methods for the NTU60 RGB+D are demonstrated in Table 5. 

Table 5. The recognition rate of different methods for the NTU60 RGB+D 

 CS/% CV/% 

ST-GCN 81.5 88.3 

AGC-LSTM 87.5 93.5 

SGN 88.7 94.3 

2s-AGCN 88.5 95.1 

3D CNN 88.8 95.3 

From Table 5, it can be observed that, compared to the current posture recognition models, the 3D CNN achieved 

higher recognition rates on both the CS and CV datasets. Firstly, on the CS dataset, the 3D CNN achieved a recognition 

rate of 88.8%, which was an improvement of 7.3% over the ST-GCN, 1.3% over the ACG-LSTM, 0.1% over the SGN, 

and 0.3% over the 2s-AGCN. In the CV dataset, the 3D CNN achieved a recognition rate of 95.3%, which was 7% higher 

than the ST-GCN, 1.8% higher than the ACG-LSTM, 1% higher than the SGN, and 0.2% higher than the 2s-AGCN. 

Overall, the 3D CNN obtained the best results on the NTU60 RGB+D dataset, demonstrating its superiority in posture 

recognition. 
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The comparison results of these methods for the dance set are demonstrated in Table 6. 

Table 6. The recognition rate of different methods for the danceset 

 Posture 1/% Posture 2/% Posture 3/% Average value/% 

ST-GCN 96.89 96.37 96.32 96.53 

ACG-LSTM 97.39 96.08 96.56 96.68 

SGN 97.16 97.17 96.88 97.07 

2s-AGCN 97.21 97.33 97.58 97.37 

3D CNN 98.77 99.03 98.36 98.72 

From Table 6, it can be observed that the 3D CNN achieved a high recognition rate for different postures and 

outperformed the other methods. In terms of average recognition rate across three postures, the 3D CNN achieved 

98.72%, which was a 2.19% improvement over the ST-GCN, a 2.04% improvement over the ACG-LSTM, a 1.65% 

improvement over the SGN, and a 1.35% improvement over the 2s-AGCN. These results indicated that the use of a 3D 

CNN was more suitable for recognizing folk dance postures compared to these posture recognition models. 

5. Conclusions 

This article mainly focuses on the posture recognition of folk dances. The Kinect V2 visual sensor was used to capture 

the movements of folk dance and obtain human skeletal joint data. The fused joint coordinates and velocities were used 

as a general feature, and a 3D CNN was designed to achieve recognition of different postures. It was found through the 

comparative experiment on the NTU60 RGB+D dataset that: 

 When the dropout rate of the 3D-CNN was 0.4, ReLU was used as the activation function, and the fused feature 

was used as the input, the recognition performance of the algorithm was the best; 

 The 3D CNN achieved a recognition rate of over 95% in recognizing the three postures in the dance set; 

 Compared with posture recognition models such as the ST-GCN and ACG-LSTM, the 3D CNN achieved higher 

recognition rates for the NTU60-CS and NTU60-CV, which were 88.8% and 95.3%, respectively; 

 Compared with posture recognition models such as the ST-GCN and ACG-LSTM, the 3D CNN achieved higher 

recognition rates for the three postures in the dance dataset, with an average recognition rate of 98.72%. 

The experimental results have demonstrated the reliability of the method proposed in this paper for posture 

recognition, which can effectively recognize different folk dance postures with high accuracy and can be promoted and 

applied in practice. However, there are still some shortcomings in this method, such as whether the proposed algorithm 

can be further optimized, the small scale of the dance set used in experiments, whether the algorithm can maintain its 

accuracy in more complex dance posture recognition tasks, and whether its real-time performance meets practical 

requirements. These issues need to be considered in future work. 
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