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Abstract 

This article develops a Bayesian framework to quantify the absolute permeability of water in a porous structure from the 

geometry and clustering parameters of its underlying pore-throat network. These parameters include the network's 

diameter, transivity, degree, centrality, assortativity, edge density, K-core decomposition, Kleinberg’s hub centrality 

scores, Kleinberg's authority centrality scores, length, and porosity. In addition, the incorporated clustering aspects of the 

networks have been determined with respect to several clustering criteria: edge betweenness, greedy optimization of 

modularity, multi-level optimization of modularity, and short random walks. As such, the article takes the first steps 

towards creating a database of micro-networks for micro-scale porous structures, to be used as the main input stream for 

the proposed Bayesian scheme. 
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1. Introduction 

The advent of X-ray micro tomography imaging technology has created an enormous opportunity for the research 

community to acquire three-dimensional images of a porous structure, which capture its true pore-space geometry 

down to a micrometer-size scale [1-8]. These images are often used as the main input stream to a variety of 

computational techniques to quantify several micro-structural attributes, such as porosity, absolute/relative 

permeability, formation factors, I-SW curves, capillary pressure curves as well as the solute transport properties [9-

19].  

In particular, the quantification of the permeability (PE) of a porous structure has gained attraction owing to its 

significance in the petroleum industry. For this purpose, stochastic modeling [20] and deep learning strategies have 

notably been used [21–28], with the latter being applied to the log data as well as the 2D/3D CT-scan images. For 

stochastic modeling, Eugene et al. (2005) [20] applied a combination of the lattice Boltzmann method (LBM) and the 

first-order reliability method (FORM) to construct cumulative distribution functions for randomly-generated porous 

structures. While reporting on a speed improvement compared to the Monte Carlo simulation, their method bears the 

same drawbacks inherited from LBM – being dependent on the choice of the collision operator as well as the 

relaxation time. For deep learning, the issue was initially treated by applying neural networks to estimate relative 

permeability curves on a field scale [23], and to further relate the quantity to the petro-physical log data [21]. On a 

macroscopic scale, Erofeev et al. (2019) [24] tested several machine learning methods to estimate the change in 
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permeability of porous rocks occurring during the desalination process in a laboratory, based on which they reported 

mixed performance of the employed techniques over the parameters considered. Furthermore, the deep learning 

strategy was applied to core data, on a microscopic scale, where processing of the micro-CT images has been in focus. 

For permeability prediction, Jinlong et al. (2018) [25] proposed a physics-informed convolutional neural network 

approach, which involves a series of fluid dynamics simulations in order to build on the training dataset required. On 

the other hand, geometrical features in binary segmented images were used by some researchers to estimate 

permeability, applying multilayer neural network (MNN) and convolutional neural network (CNN) methods [26]. 

Machine learning strategies were also used for the purpose of feature selection to identify the sets of micro structure 

quantities as well as multiscale complex network features that best characterize permeability [28], and for modeling 

permeability via a connectivity index attributed to the 3D images of the porous structure [27]. 

The computational theme used in the pore-scale characterization literature thus far has followed either of the two 

major routes—direct or indirect. In the direct scenario, the pore-scale geometry of the structure is explicitly 

incorporated into the simulation; whereas in the indirect framework, a conceptualized interconnected pore-throat 

network is considered, which maintains the same topological features as the original image. In this regard, the former 

approach takes advantage of both mesh-free and mesh-dependent techniques, such as the lattice Boltzmann method, 

smoothed particle hydrodynamics (SPH), and finite-volume-based Computational Fluid Dynamics (CFD). In general, 

the latter approach—pore network model (PNM)—imposes less computational burden as the solution of partial 

differential equations for the model reduces to a set of analytical models for flow in each network element [19]. In 

spite of this simplicity, the PNM results have been successfully validated against the micro-model experiments across 

a wide range of pore-structure and fluid-flow parameters [19, 29]. The fidelity of PNM results against direct-

simulation counterparts have also been evaluated [19].  

The Bayesian Network (BN) theory has been applied in the context of geosciences for the petro-physical log-based 

facies and fracture classification, understanding of relationships among geologic features, and identification of simple 

rock facies as a method capable of both showing correlation and causation among different input and output variables 

[30-32]. For this purpose, Bhattacharya and Mishra (2018) [30] reported the first usage of a Bayesian network for the 

characterization of shale facies and fractures under the limited data availability of common logs. Harnessing the BN 

capability, the authors were able to reveal the complex interplay amongst multiple petrophysical sensors, based on 

which gamma-ray, resistivity, and density logs were determined as being the most influential for the dataset 

considered. The unique feature of the Bayesian network in demonstrating the complex relationship among parameters 

is distinctive to the other machine learning algorithms, posing the theory as being potentially useful in other 

subsurface applications. 

Although rich in content, the trend of the current literature on pore-scale modeling is to apply established 

simulation techniques or compare their performances. The present article develops upon an intuition of providing an 

alternative procedure for estimating micro- structural attributes via the Bayesian network theory. As such, the article 

completes the first lines of a mega-dataset, the Database of Micro Networks (DMN), which comprises the main input 

stream for the newly proposed computational scheme. The article makes an added contribution to the existing 

literature by conducting the first study to relate the absolute permeability of a porous matrix to the geometry and 

clustering parameters of its underlying network.  

2. Database of Micro Networks 

A cornerstone of the present article is establishment of a Database of Micro Networks, to be used as the main input 

stream for the Bayesian methods for micro-structural characterization purposes. The initial hypothesis behind this 

databank was to incorporate different features related to the geometry, and clustering patterns of the networks 

extracted from micro-scale porous structures.  

The DMN entries initially account for several measures on the geometry and clustering parameters of the pore-

throat network. As for the network geometry, the parameters considered have been the diameter (DI), transivity (TR), 

degree (DE), centrality (CE), assortativity (AO), edge density (ED), K-core decomposition (KC), Kleinberg’s hub 

centrality scores (HS), and Kleinberg's authority centrality scores (AS) [33]. Table 1 lists a brief description of these 

parameters. Additional parameters of image length (LE) and porosity (PO) have also been embodied into the DMN 

entries. As for the clustering; the number of (pore) clusters found in the pore-throat network has been recorded into the 

DMN. In this regards, several clustering criteria were analyzed – edge betweenness (NG), greedy optimization of 

modularity [34] (GO), multi-level optimization of modularity [35] (LV), short random walks [36] (RW). The clusters 

may signify an important feature in the process of transport within the network. Imaginably, they can be indicative of 

areas within the network with similar flow regimes – areas with similar fluid velocity within laminar domain; 

nevertheless the issue should be further investigated as the concept is new to the field. For a description of the 

clustering criteria, however, the reader is referred to the corresponding literature, to keep this article within a 

reasonable length.  
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Table 1. Description of the DMN entries related to the network/graph theory 

Network 

Parameter 
Description 

DI The longest of all the shortest paths in a network 

TR 
The number of closed triplets over the total number of triplets (both open and closed). A triplet is three nodes that are connected by 

either two (open triplet) or three (closed triplet) undirected ties 

DE The degree of a vertex of a graph is the number of edges incident to the vertex, with loops counted twice 

CE 
The number of links incident upon a node. The CE parameter reported herein is a graph-level centrality score based on node-level 
centrality measures 

AO The tendency of nodes to connect to other nodes which are similar on the focal attribute being the node degree 

ED The ratio of the number of edges and the number of possible edges 

KC 
The k-core of graph is a maximal subgraph in which each vertex has at least degree k. The coreness of a vertex is k, if it belongs to 

the k-core but not to the (k+1)-core 

HS The hub scores of the vertices are defined as the principal eigenvector of A*t(A), where A is the adjacency matrix of the graph. 

AS The authority scores of the vertices are defined as the principal eigenvector of t(A)*A, where A is the adjacency matrix of the graph. 

The primitive design of DMN also considers the matter of directionality. Classically, the pore-throat connectivity 

in an image of a porous media can be established using the standard Maximal-Ball protocol [37]. At this stage, the 

network obtained is of an undirected nature, since it fails to account for relative positioning of pores with respect to 

the flow and merely marks them as connected. The modification to this hypothesis comes along with considering the 

idea of directed networks. In this respect, the connectivity of a given pore to another target one is rendered, only if 

connected on the undirected-network map as well as meet the directionality requirement. The directionality 

requirement puts a constraint on the flow - only permitting passage in the direction being considered. As such, for 

instance, flow passage theoretically occurs only from pores with lower placement in the x-direction to pores with 

higher placement in the x-direction, when constructing a directed network in the x-direction. The DMN entries report 

on parameters elicited over both the directed and undirected pore-throat networks. Although borrowed from a 

supposedly distant topic of network science, these parameters deserve an analysis to study their potential relevance to 

the transport properties within the porous media. 

3. Bayesian Network Methodology 

The central idea behind the present article has been to devise a Bayesian route for estimation of the absolute 

permeability in porous structure. With a completed DMN databank at hand, this goal is achievable in two steps. At 

first, the Bayesian Network theory can be used to identify the statistically-significant influencing parameters on PE. 

Given this information, the BN theory can be applied, a second time, to make approximate inference (on an unknown 

value). For our problem of interest, the situation is such that a new line of data is appended to the DMN (perhaps 

through analysis of a new micro-CT scan image), while its absolute permeability is to be predicted.  

Since the Bayesian Network theory plays a pivotal role in the present analysis, a description of its methodology is 

deemed necessary, at this stage. A Bayesian network is an implementation of a graphical model, in which nodes 

represent (random) variables and arrows represent probabilistic dependencies between the nodes [38]. The BN`s 

graphical structure is a directed acyclic graph (DAG) which enables estimation of the joint probability distribution.  

For each variable, DAG defines a factorization of the joint probability distribution, into a set of local probability 

distributions, where the form of factorization is given by the BN`s Markov property – assuming a variable to be solely 

dependent on its parents. In this sake, the methodology seeks to find a structure, along with its parameters. The two 

classifications of the BN-structure-learning process, either treat the issue by analyzing the probabilistic relationships 

supervised by the Markov property of Bayesian networks with conditional independence tests and subsequently 

constructing a graph that satisfies the corresponding d-separation statements (Constraint-based algorithms), or by 

assigning a score to each BN candidate and maximizing it with a heuristic algorithm (Score-based algorithms) [39].  

By taking advantage of the fundamental properties of the Bayesian Networks, approximate inference (on an 

unknown value) is attainable. This approach should evade the curse of dimensionality, due to its mere usage of the 

local distributions [40]. Given the BN network structure established, the stochastic simulation can be applied to 

generate a large number of cases from the distribution network, from which the posterior probability of a target node is 

estimated. In this regards, the two prominent algorithms are the Logic sampling (LS) and the Likelihood weighting 

(LW). The former algorithm generates a case by selecting values for each node – weighed by the probability of that 
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values occurring – at random. The nodes are traversed from the parents (root) nodes down to children (leave) nodes. 

As a consequence, at each step the weighing probability is either the prior or the Conditional Probability Table entry 

for the sampled parent values. An instantiation of all the nodes in the BN is later on created, once all the structure is 

visited. The collection of instantiation data enables estimation of the posterior probability for node X given evidence E 

(Appendix A). The latter algorithm is similar to the former with a slight modification – adding the fractional 

likelihood of the evidence combination to the run count, instead of one (Appendix B).     

In a nutshell, the Bayesian quantification framework proposed in the present article can be visualized according to 

the flowchart presented in Figure 1. Provided the permeability is sought on a porous structure, the underlying pore-

throat connectivity is initially assessed (by processing the CT-scan image of the structure). Subsequently, several 

measures related to the clustering/geometrical characteristics of the pore-throat network (as prescribed in the DMN 

entries) are determined. The new set of input parameters is later appended to the DMN, to obtain a probabilistic 

estimate on its unknown (permeability) from the BN theory, using the information recorded in the DMN. 

Figure 1. The flowchart of the proposed Bayesian quantification methodology 

4. Results 

The initial version of the Database of Micro Networks was formed upon the data acquired from different 

subsections of benchmark micro-CT scan images [41-43]. The rationale behind this choice was to facilitate the matter 

of future comparison for the academics. The subsections were selected by cutting the original images at 50/100-pixel 

regular intervals in the z-direction. Figure 2 depict the stereolithography surfaces of the pore space of the S1 image, 

measuring 868.3 micrometers in each direction, which was extracted using an in-house developed code. A subsection 

of the S1 image - measuring between the first (0-434.15) micrometers in each direction of the image - is also provided 

in Figure 3. Later, the pore-throat network was detected over each subsection, and the corresponding 

undirected/directed networks were established.  

Start
Obtain the CT-scan data of 
a porous rock

Determine the underlying 
pore-netwock connectivity 
network

Determine its 

dustering/geometry 

network characteristics

Merge the data with the 
data in the corresponding 
DMN pool
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permeability of the porous 
rock

End



HighTech and Innovation Journal         Vol. 1, No. 4, December, 2020 

152 

 

Figure 2. The view from side of the stereolithography surfaces of the S1 image, measuring 868.3 micrometers in each direction 

Figure 3. The view from side of the stereolithography surfaces of the pore space of an S1-subsection, ranging between (0-434.15) 

micrometers in the each direction 

Given the undirected/directed networks over the surveyed space, the geometry/clustering parameters of the 

networks were quantified. For the DE/KC/HS/AS measures, the corresponding mean values were embedded into the 

body of the DMN. In addition, the total number of clusters detected, under each criterion, in a surveyed network was 

recorded into the DMN entries. The pore communities were detected for the undirected/directed networks constructed 

upon the S1-subsection, illustrated in Figure 3, using the GO/LV/RW criteria.  

As the DMN requires an initial completion on its absolute permeability entries, the values were computed within 

selected micro-CT scan images was attempted, using a myriad of PNM-LBM-CFD methods. For PNM, the absolute 

permeability was estimated using the network model implemented in the OpenPNM code [44]. For each image 

subsection, the PNM was applied in the three principal directions (x, y, and z) for the constructed directed network, 

and in the x-direction for the corresponding constructed undirected network. For LBM, the D3Q19 descriptor model 

[45] was used along with a Bhatnagar–Gross–Krook (BGK) collision operator for the halfway bounce-back scheme at 

the solid-fluid boundaries; albeit the latter choice may cause numerical instabilities owing to deficiencies such as 

viscosity-dependent slip at the walls [17, 18, 46]. The LBM results were generated using the Palabos Parallel Lattice 

Boltzmann Solver [47]. In addition, the open source CFD toolbox was used to implement a finite-volume CFD scheme 

to simulate the water flow through selected porous structures [48]. Using the pressure/velocity data collected from the 

CFD runs, an in-house code was developed to estimate the single-phase permeability after calculating the pressure 

drop by the method of pressure gradient force proposed by Raeini et al. (2014) [49].   
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Table 2 lists the computed PE results for the S1-subsection (illustrated in Figure 3).  In general, the output from the 

three methods should yield comparable results [50]; yet the values in Table 2 exhibit a degree of discrepancy, which 

can be accounted to the choice of descriptor models or boundary conditions in the LBM/CFD. For this sake, only the 

PNM results were incorporated into the body of the DMN framework, as it relies on less influencing parameters. 

Moreover, the selection of PNM to represent the absolute permeability values should allow speedy generation of data 

for DMN entries, as it is less computationally expensive. Following the above procedure, the Database of Micro 

Networks for sandstone were generated and subsequently used as the input stream for the Bayesian network method. 

The DMN can be obtained from the authors. 

Table 2. The estimated absolute permeability of water, in the x-direction, in the S1-subsection  

Method Absolute permeability (mD) 

PNM* 1722 

LBM 1228 

CFD 7043 

*From directed network. 

In a recent article, Sun et al. (2019) [27] have presented experimental laboratory measurements of absolute 

permeability, as truth ground reference, of some micro-scale carbonate structures, which were shown to be in 

agreement with their introduced Effective Pore Connectivity Index (EPCI). The EPCI-derived permeability values, on 

the other hand, were confirmed to be close to the estimated values of permeability obtained by the PNM/LBM 

techniques. Interestingly, the results presented by Sun et al. (2019) [27] for sandstones, were established on the same 

micro-structures considered in the present work. As such, the PNM entries for the absolute permeability of the 

sandstone microstructures in this study should be close to the corresponding experimental values, if tested.  

With a DMN database available, the Bayesian prediction of absolute permeability was practiced by initially 

implementing a Bayesian graphical structure-learning. Implementation of the graphical structure-learning of the 

Bayesian networks was attempted using the bnlearn package [51]. The score-based algorithm was tested, in this work. 

For the score-based case, a hybrid conditional linear Gaussian log-likelihood score was applied. For BN inference 

predictions were obtained by applying the LW algorithm and extracting the expected value of the conditional 

distribution of 500 simulation results. All the available nodes in the structure were taken as evidence, in that situation, 

except to the node related to the variable being predicted.  

Figure 4 shows the Bayesian Network of significant/insignificant influencing parameters on PE, obtained through 

the hybrid conditional linear Gaussian log-likelihood BN method, for the directed networks extracted from micro-CT 

images. A directed arrow goes from the influencing to the influenced parameter, with its significance level being 

marked by the thickness of the connecting line. In this BN setting, the significance is rendered on being supported by 

the data. Assuming a sequence of A→B→C on a Bayesian network graph, then C would be determined based on the 

probability density function of C – derived from data - while A and B have the specified values. Considering the 

strength coefficient (between two parameters) as the change (increase/decrease) in the network score caused by the 

removal of the corresponding arc, its significance is deemed should it fall below a threshold value of zero. As evident, 

several of the considered parameters form a hierarchy of influencing effect on the absolute permeability. This should 

be a conspicuous finding as some of the supposedly unrelated parameters, are now found with statistically-significant 

relationship to the PE parameter. In order to delve more into this issue, the statistical relationship between DMN 

entries and the PE was also studied by several other methods – the random forest and entropy filters [52, 53]. Nearly 

the same result was obtained on the set of significant influencing parameters on PE, from the BN and random forest 

methods applied to the directed networks (Table 3) – confirming the robustness of BN methodology to rank feature 

importance. A similar analogy was also applied to the undirected network mode, in which some disagreement was 

found on the influencing parameters (Table 4). As evident, the results comply with the classical view of relating the 

permeability in a porous matrix to its porosity and length (i.e. pressure drop over length) [54-56]. In addition, the 

analysis introduces new parameters to influence the permeability, with relevance to the geometrical/clustering features 

of the underlying pore-throat network.  

Table 3. The set of significant influencing parameters on PE in directed networks 

Method Significant influencing parameter 

BN AO, AS, CE, DI, DE, KC, ED, GO, HS, LE, LV, NG, PO, RW, TR 

Random Forest AO, AS, CE, DI, DE, KC, ED, GO, HS, LE, LV, NG, PO, RW, TR 

Entropy AO, CE, DE, DI, HS, KC, LV, PO, RW 
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Table 4. The set of significant influencing parameters on PE in undirected networks 

Method Significant influencing parameter 

BN AO, AOU, AS, CE, CEU, DE, DEU, DI, DIU, EDU, GO, GOV, HS, KC, KCU, LE, LV, LVU, NG, NGU, PO, RW, RWU, TR, TRU 

Random Forest ASU, CE, DE, DEU, DI, DIU, GO, HS, HSU, KC, KCU, LV, PO, RW 

Entropy AO, ASU, CE, CEU, DE, DEU, DI, DIU, GO, GOU, HS, HSU, KC, KCU, LV, LVU, PO, RW, RWU 

Figure 4. The Bayesian Network of significant (solid lines), insignificant (dashed lines) of influencing parameters on PE, 

obtained through the hybrid BN method over the directed networks extracted from micro-CT images  

A physical understanding of the newly found parameters can be developed by thinking of the absolute permeability 

to be constructed over an intelligent path. This path is detected by considering the connectivity of the clusters detected 

under the GO/NG/RW. Since the number of these clusters has found to be important on PE, the functionality of each 

cluster can be viewed in a similar manner – a replica of the functionality of lungs in the respiratory system, where two 

lungs work for a same purpose. The results also show the permeability to relate to the corresponding network diameter 

- the longest of all the shortest paths in the network (Table 1) - which again would fit into the breakthrough concept 

for its experimental determination. For the new geometrical features detected, the significance of k-core of network 

(Tables 3 and 4) suggests an analogy between different (supposedly uncorrelated) phenomenon – the passage of flow 

in a porous matrix, the spreading of an epidemic disease, and the dissemination of information in a social network 

[57]. The inspection of other geometrical features and their detected statistical significance on PE should signify the 

existence of some influential spreader nodes within the pore-throat network, for the passage of flow, which can easily 

be identified given their geometrical scores. This latter finding –existence of influential spreader nodes for flow 

passage- should strong support the existence of an intelligent path inside the porous matrix, along which the influential 

spreader nodes are distributed.  

Once the influencing parameters are detected, the BN framework is re-applied to make inference on the unknown 

values. To account for accuracy of the proposed BN methodology, a 10-fold cross validation was implemented, in 

which the DMN pool was randomly divided into a 75% learning and a 25% test sections, with the PE values to be 

predicted by the BN method. The process was repeated over different random selections of the learning/test groups. 

For the case of directed networks, the mean error value obtained from the BN predictions was lower than 7%, which is 

favourable given the associated subsurface uncertainties. Nevertheless, the BN methodology did not yield a 

satisfactory result for the networks in the undirected mode pattern. This could be advocated in favour a directed 

network to truly capture the image of connectivity/flow within micro-structures. 

5. Conclusion 

The Database of Micro Networks provides a firm foundation to apply Bayesian methods for quantification of the 

micro-structural attributes within micro-CT images. The Bayesian Network results reveal the absolute permeability of 
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a micro-structure to be affected by several parameters amongst the DMN entries. These entries, with a statistically 

significant relationship to PE, were found to be amongst the geometry as well as cluster-related parameters of their 

corresponding network. A 10-fold cross validation of BN-based predictions of PE shows a mean error value of almost 

7%, as implemented on the DMN. The BN exhibits less satisfactory results for undirected networks, which can be 

interpreted in terms of a directed network to better capture the image of connectivity and flow within micro-structures. 

The DMN is yet to be completed by future research, which enables a better account of the Bayesian predictions within 

micro-structures. 

6. List of Abbreviations 

AO Assortativity of directed network AOU Assortativity of undirected network 

AS Kleinberg's authority centrality scores of directed network ASU 
Kleinberg's authority centrality scores of undirected 
network 

CE Centrality of directed network CEU Centrality of undirected network 

CFD Computational Fluid Dynamics DAG Directed Acyclic Graph 

DE Degree of directed network DEU Degree of undirected network 

DI Diameter of directed network DIU Diameter of undirected network 

DMN Database of Micro Networks DMN-C Database of Micro Networks for Carbonate images 

DMN-S Database of Micro Networks for Sandstone images ED Edge density of directed network 

EDU Edge density of undirected network GO 
Number of clusters in directed network obtained from the 
greedy optimization of modularity clustering criteria 

GOU 
Number of clusters in undirected network obtained from 
the greedy optimization of modularity clustering criteria 

HS Kleinberg’s hub centrality scores of directed network 

HSU Kleinberg’s hub centrality scores of undirected network KC K-core decomposition of directed network 

KCU K-core decomposition of undirected network LBM Lattice Boltzmann Method 

LE Length of image (m) LS Logic sampling 

LV 
Number of clusters in directed network obtained from the 
optimization of modularity clustering criteria 

LVU 
Number of clusters in undirected network obtained from 
the optimization of modularity clustering criteria 

LW Likelihood weighting NG 
Number of clusters in directed network obtained from the 
edge betweenness clustering criteria 

NGU 
Number of clusters in undirected network obtained from 
the edge betweenness clustering criteria 

PE Absolute Permeability (Darcy) 

PNM Pore Network Model PO Porosity of image 

RW 
Number of clusters in directed network obtained from the 
short random walks clustering criteria 

RWU 
Number of clusters in undirected network obtained from 
the short random walks clustering criteria 

SPH Smoothed Particle Hydrodynamics TR Transivity of directed network 

TRU Transivity of undirected network  
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Appendix A: The Logic sampling algorithm 

Consider an established Bayesian Network. Assume X to be node in this BN structure, and E as a given evidence. 

The Logic sampling algorithm for estimation of the posterior probability of node X given evidence E=e, is computed 

by the following procedure [38]: 

Step-1   Initialize 

             For each value xi for node X 

                           Create a count variable Count (xi,e) 

             Create a count variable Count (e) 

             Initialize all count variables to zero 

Step-2   Repeat 

             For all the root (parent) nodes  

                         Choose a value, weighed the choice by the priors, at random 

             Loop 

                         Choose values for children at random, using the conditional probabilitys given the known values of the 

parents 

            Until all the BN structure is visited 

Step-3   Update  

                 If the case (instantiation) includes E=e 

                            Count(e)=Count(e)+1 

                If the case includes both X=xi and E=e 

                         Count(xi,e)= Count(xi,e)+1 

  Step-4   Estimate  

                 Obtain an estimate for the posterior probability 
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Appendix B: The Likelihood weighing algorithm 

Consider an established Bayesian Network. Assume X to be node in this BN structure, and E as a given evidence. 

The Likelihood weighing algorithm for estimation of the posterior probability of node X given evidence E=e, is 

computed by the following procedure [38]: 

Step-1   Initialize 

             For each value xi for node X 

                           Create a count variable Count (xi,e) 

             Create a count variable Count (e) 

             Initialize all count variables to zero 

Step-2   Repeat 

               For all root nodes 

                            If a root is an evidence node, Ej 

                                      Choose the evidence value, ej 

                                      likelihood(
jj eE  )= )( jj eEP   

                             Else 

                                     Choose a value for children at random, using the conditional probabilities given the known 

values of the parents 

                 Until the entire BN structure is visited 

  Step-3   Update  

                 If the case includes E=e 

                               )E()()( j jj elikelihoodeCounteCount   

                 If this case includes both X=xi and E=e 

                                  )E(),(),( j jjii elikelihoodexCountexCount   

Step-4   Estimate  

                 Obtain an estimate for the posterior probability 
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