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Abstract 

In recent times, the growing significance of Internet of Things (IoT) devices in people's lives is undeniable, driven by their 

myriad benefits. However, these devices confront cybersecurity threats akin to traditional network devices, as they depend 

on networks for connectivity and synchronization. Artificial Intelligence (AI) techniques, specifically Machine Learning 

(ML) and Deep Learning (DL), have demonstrated notable reliability in the field of cyberattack detection. This study 

focuses on detecting Flood and Brute Force cyberattacks using Machine Learning (ML) and Deep Learning (DL) models. 

The primary emphasis lies in identifying traffic features that significantly detect these types of attacks. The experimental 

study incorporates eight models: Decision Tree (DT), K-Nearest Neighbor (KNN), Random Forest (RF), Support Vector 

Machines (SVM), Logistic Regression (LR), Gradient Boosting (GB), Naïve Bayes (NB), and Artificial Neural Network 

(ANN). Two sets of experiments were conducted, with the first set involving six features and the subsequent set, after 

feature selection, focusing on a reduced set of three features. The evaluation of the proposed model's efficiency and 

performance relied on metrics such as Accuracy, Precision, Recall, and F1-score. Remarkably, all proposed models 

exhibited high performance in both sets of experiments. However, the Gradient Boosting (GB) classifier suppressed others, 

attaining an impressive accuracy level of 95.94% and 95.28% in the sets with six features and three features, respectively. 
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1. Introduction 

In the contemporary era, the internet has become a fundamental aspect of our daily existence. Attempts to breach 

computer systems and networks have escalated due to the surge in online applications that evolved with the advent of 

transformative technologies like the Internet of Things (IoT). IoT, seamlessly integrating intelligent objects and devices, 

has experienced exponential growth, projecting a global connection of 15.1 billion devices in 2023 [1]. The range of IoT 

applications extends from wearables for health monitoring and smart fridges in home appliances to intelligent boards for 

education [2]. Nonetheless, IoT confronts a range of cyber threats in the internet's hostile environment, emphasizing the 

ongoing need for efforts to support network security. Machine Learning (ML) emerges as a highly successful 

computational model for embedding Artificial Intelligence (AI) in the IoT domain. ML methods in cybersecurity have 

been instrumental in various network security advancements [3], including network traffic analysis [4-6], intrusion 

detection [7], and botnet identification [8-10].   
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ML plays a crucial role in IoT solutions with its unique ability to automate or adapt knowledge-based behaviors. It 

can unearth valuable insights from data generated by humans or machines. One of its key applications is providing 

security services in IoT networks, particularly in the progressive research on attack detection strategies [11]. The threats 

posed by two prevalent cyberattacks, Flood Denial of Service (DoS) attacks and Real-Time Streaming Protocol (RTSP) 

brute force attacks, emphasize the significance of this role. These attacks, if not detected and mitigated, can cause severe 

disruptions, potentially leading to system crashes and rendering the system unreachable for its designated users.  

The limited computational power, short battery life, and poor built-in security of IoT devices make them easy targets 

for attackers to launch DDoS and DoS attacks. Attackers often exploit vulnerabilities in IoT devices using brute-force 

techniques to compromise credentials and gain access to these devices. Once compromised, these devices can be turned 

into malicious bots and assembled into large botnets controlled by attackers [12]. Malicious bots could then establish 

DoS attacks or brute-force attacks.  

DoS attacks employ two primary approaches-  flooding services or crashing services—where flood attacks occur 

when a server cannot manage the incoming traffic, resulting in system slowdown or cessation. Common flood attack 

types encompass buffer overflow attacks, ICMP (Internet Control Message Protocol) floods, and SYN floods. In contrast, 

brute-force attacks, a hacking technique reliant on trial and error, target encryption keys, passwords, and login credentials 

to gain unauthorized access. Despite its simplicity, brute-force attacks remain popular among hackers, utilizing 

computers to test various username-password combinations until they discover the correct login information. This 

intriguing simplicity and popularity of brute-force attacks highlight the need for advanced security measures.  

ML plays a prominent role in attack detection through two cyber-analysis types: signature-based and anomaly-based. 

Signature-based approaches utilize specific traffic characteristics or "signatures" to accurately identify known attacks 

without generating excessive false alarms. While effective, these approaches have limitations, such as the inability to 

detect previously undetected attacks and the need for regular manual updates to attack traffic signatures. On the other 

hand, Anomaly-based detection identifies anything deviating from usual network behavior as a potential attack, posing 

the risk of high False Alarm Rates (FARs). FARs introduce the possibility of categorizing formerly unrecognized yet 

legal behaviors as anomalies. Notably, a hybrid strategy combining signature and anomaly detection methods holds 

promise.  

To commence, Anwer et al. [13] presented a robust framework for detecting malicious network traffic, demonstrating 

its reliability using the NSL-KDD dataset. The framework, powered by three popular algorithms, namely, Random Forest 

(RF), Support Vector Machines (SVM), and Gradient Boosted Decision Trees (GBDT), reliably analyzes traffic data to 

expose data that is maliciously traveling over IoT devices. The RF classifier attained an optimum accuracy of 85.34% 

and a specificity of 95.09%. Utilizing the same NSL-KDD dataset, Tomer & Sharma [14] introduced an innovative 

ensemble ML model for real-time attack detection on fog nodes. Their top-performing model, featuring base classifiers 

such as K-Nearest Neighbors (KNN), Naive Bayes (NB), and Decision Trees (DT), and employing an ensemble approach 

through voting, achieved exceptional results with the NSL-KDD dataset, yielding 99.4% precision, 99.7% recall, 99.5% 

F1-score, and a ROC of 99.9%.  

Alsamiri & Alsubhi [15] demonstrated the impressive speed and efficiency of their evaluation of seven ML models, 

including Iterative Dichotomiser 3 (ID3), KNN, RF, Quadratic Discriminant Analysis (QDA), AdaBoost, Multilayer 

Perceptron (MLP), and NB using Bot-IoT dataset, which covers a wide variety of botnet attacks. Moreover, 84 new 

network traffic features were extracted using CICFlowMeter [16]. The KNN model, which had accuracy, recall, 

precision, and an F1-score of 99%, was the best performer. Likewise, Htwe et al. [17] suggested a detection framework 

employing ML techniques, including the Classification and Regression Trees (CART) algorithm, on the N-BaIoT 

dataset. The N-BaIoT dataset is a comprehensive IoT intrusion detection dataset containing many network traffic 

features. Comparative analysis with the NB classifier showed that CART achieved significantly better results, averaging 

a detection accuracy of 99%.  

Gaber et al. [18] proposed an efficient intrusion detection method, employing recursive feature elimination and 

constant removal for feature selection to counter injection attacks in IoT devices. They evaluated multiple ML algorithms 

(RF, SVM, and DT) on the Aegean Wi-Fi Intrusion Dataset (AWID), a popular dataset used for research in wireless 

network security, particularly Intrusion Detection Systems (IDS). The results revealed that DT emerged as the most 

potent, achieving outstanding results with 99% accuracy, 95% precision, and a 90% F1-score, all accomplished with a 

concise set of 8 features. To identify common DDOS attacks such as BASHLITE and Mirai, Aysa et al. [19] constructed 

a framework to detect abnormal defense activities, focusing on IoT-specific features. The training and testing of LSVM, 

Neural Network, J48, and RF ML models determined that the optimal outcome was achieved by combining RF and DT, 

achieving an outstanding precision, recall, and F1-score of 99.7%.  

Notably, Krishnan et al. [20] conducted a significant study where they built three classifiers to predict whether the 

traffic is malicious or benign. Their research, which involved several supervised feature selection methods on IoT 

network data, was instrumental in determining the optimal feature selection approach for network intrusion prediction. 
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The models they used, SVM, RF, and Extreme Gradient Boosting (XGBoost), were rigorously compared, and the 

analysis concluded that using recursive feature elimination for feature selection was the best choice. The model XGBoost 

performed exceptionally well, achieving a perfect F1-score of 100%, a recall rate of 99.79, and an accuracy level 

matching the recall at 99.79. Similarly, Saran & Kesswani [21] identified multi-class intrusion attacks in IoT 

environments, evaluating the performance of various ML classifiers based on accuracy, precision, recall, and F1-Score. 

The MQTT-IoT-IDS2020 dataset demonstrated the effectiveness of classifiers such as RF, DT, k-NN, SVM, NB, and 

Stochastic Gradient Descent (SGD), with RF and DT achieving a high accuracy of 99.98%. 

Hammood & Sadiq [5] recently discussed ensemble ML methods for IDS in IoT environments. They utilized three 

publicly available datasets: UNSW-NB15, IoTID-20, and BotNetIoT, which contain labeled network traffic data 

categorized as normal or malicious, including specific attack types, such as DoS attacks. The suggested method utilized 

six ML algorithms: Logistic Regression (LR), NB, DT, Extra Trees, RF, and GBoost. The predictions of all six ML 

algorithms were combined using an ensemble approach. Performance metrics: accuracy, precision, recall, and F1 score 

were conducted to evaluate the models. The ensemble method achieved an accuracy of 88.41% on IoTID20, 98.52% on 

UNSW-NB15, and 91.03% on BoTNeTIoT, outperforming individual ML algorithms. The experiment’s results 

highlight the effectiveness of the ensemble methods for improving intrusion detection accuracy in IoT networks.  

Furthermore, Altulaihan et al. [22] utilized the IoTID20 dataset to showcase the effectiveness of ML classifiers like 

DT, RF, KNN, and SVM in detecting IoT cyberattacks, particularly DoS attacks. The research employed feature 

selection algorithms such as Correlation-based Feature Selection (CFS) and Genetic Algorithm (GA) to optimize the 

performance of these classifiers. While the DT and RF classifiers achieved a superior performance of 100% accuracy 

when trained with GA under specific conditions, the SVM model with GA features showed a lower accuracy of 88.29%. 

This discrepancy was attributed to the inherent difficulty faced by SVMs in handling large datasets with strong feature 

correlations, a challenge that has yet to be encountered by DT and RF classifiers. 

Several studies have explored the use of DL for attack detection. For instance, Pecori et al. [23] evaluated the 

effectiveness of DL models of different numbers of hidden layers compared to traditional ML approaches. They curated 

an extensive dataset of IoT traffic flows for model assessment, employing Hoeffding Tree (HT), DT, and self-constructed 

DL models with layers ranging from four to seven. The DL architecture outperformed the ML models in both binary and 

multinomial classification. The DL with seven hidden layers achieved outstanding results, recording an accuracy of 

99.75%, a precision of 99.37%, a recall of 99.37%, and an F1-score of 99.37% for binary classification. Simultaneously, 

the DL with seven hidden layers produced the best results. In the meantime, the DL with six hidden layers yielded 

optimal results for multiclass classification, securing a 99.73% accuracy, 98.86% precision, 98.67% recall, and a 98.77% 

F1-score. 

Moreover, Alkahtani & Aldhyani [24] focused on botnet attacks on nine commercial IoT devices. They employed a 

hybrid DL approach denoted as (CNNLSTM), which combins the Convolutional Neural Networks (CNN) and Long 

Short-Term Memory (LSTM) algorithms. The study utilized the N-BaIoT dataset, which featured benign and malicious 

patterns obtained from a real system. The CNN-LSTM model achieved accuracies ranging from 87.19% to 90.88% 

across various IoT devices. Following a more hierarchical approach, Al-zubidi et al. [25] proposed a new intrusion 

detection system named CNN-LSTM-XGBoost. The study highlighted that the traditional IDSs for DoS and DDoS 

attacks cannot detect new attacks, resulting in a low accuracy rate. The proposed system combines CNNs, LSTM 

networks, and XGBoost to achieve high accuracy in attack detection. CNNs and LSTMs extract features from raw 

network traffic data, identifying temporal and spatial patterns. These features were then fed into XGBoost, a fast and 

efficient classifier, to categorize the traffic as normal or containing an attack. CNN-LSTM-XGBoost was evaluated on 

three publicly available datasets, namely CICIDS-001, CIC-IDS2017, and CIC-IDS2018. All three datasets focus on 

IDS network traffic data and contain normal and malicious traffic with various attack scenarios, including DoS and 

DDoS attacks. The system achieved over 98% accuracy on all datasets, demonstrating its effectiveness compared to 

existing methods. 

Conversely, Islam et al. [26] aimed to identify IoT threats through IDS. They utilized both ML algorithms (SVM, 

RF, and DT), as well as DL algorithms (Deep Neural Network (DNN), Deep Belief Network (DBN), LSTM, stacked 

LSTM, and Bi-LSTM). Five benchmark datasets evaluated the models: IoTDevNet, NSLKDD, DS2OS, IoT Botnet, and 

IoTID20. The DL approach outperformed ML algorithms, with Bi-LSTM demonstrating the best performance, achieving 

testing accuracies of 99.27%, 99.97%, 99.39%, 99.99%, and 99.991% on the respective datasets.  

Lastly, Karamollaoğlu et al. [27] investigated the use of the CNN for attack classification in IoT networks. The study 

discussed a hybrid approach combining Principal Component Analysis (PCA) and Bat Optimization Algorithm for 

dimensionality reduction to improve efficiency on resource constrained IoT devices. The system was evaluated on two 

datasets, IoTID20 and BoT-IoT, which contain various attack types, including DoS, DDoS, and botnet attacks. The 

model's performance was evaluated using accuracy, precision, recall, and F1-score. The proposed model has achieved 

99.9% accuracy on both datasets. 
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Table 1 summarizes the reviewed studies, encompassing methods, datasets, attack types detected, and achieved 

accuracy and F1-scores.  

Table 1. Summary of the Literature Review 

Reference Method Used Dataset Attack Type Accuracy F1-score 

Anwer et al. (2021) [13] RF NSL-KDD Probe, DoS, U2R, and R2L 85.34% - 

Tomer & Sharma (2022) 

[14] 
KNN, NB, and DT NSL-KDD Probe, DoS, U2R, and R2L - 99.5% 

Alsamiri & Alsubhi 

(2019) [15] 
KNN Bot-IoT 

Probing, DoS, and Information 

Theft. 
99% 99% 

Htwe et al. (2020) [17] CART N-BaIoT 
Ack, scan, syn, udp, udpplain, 

tcp, junk, and comb attacks. 
99% - 

Gaber et al. (2022) [18] DT AWID Injection attacks 99% 90% 

Aysa et al. (2020) [19] RF and DT 
A standard dataset containing 

common attacks 
Mirai and BASHLITE - 99.7% 

Krishnan et al. (2021) 

[20] 
XGBoost Private IoT network data DoS and spoofing 99.79% 100% 

Saran & Kesswani, 

(2023) [21] 

NB, RF, DT, SVM, k-NN, 

and SGD 
MQTT-IoT-IDS2020 intrusion attacks 99.98% 99.98% 

Hammood & Sadiq 

(2023) [5] 
Ensemble ML 

UNSW-NB15, IoTID-20, 

BotNetIoT 
DoS 

88.41% on IoTID20, 

98.52% on UNSW-NB15, 

and 91.03% on BoTNeTIoT 

- 

Altulaihan et al. (2024) 

[22] 
DT, RF, KNN, SVM IoTID20 DoS 100% 100% 

Pecori et al. (2020) [23] DL with six hidden layers - Scanning, DoS, Mirai, MITM 99.73% 98.77% 

Alkahtani & Aldhyani 
(2021) [24] 

CNN-LSTM N-BaIoT dataset BASHLITE and Mirai 90.88% - 

Al-zubidi et al. (2024) 

[25] 
CCN-LSTM-XGBoost 

CICIDS-001, CIC-IDS2017, 

CIC-IDS2018 
DoS, DDoS 98% 99% 

Islam et al. (2021) [26] Bi-LSTM 
NSLKDD, IoTDevNet, 

DS2OS, IoTID20, IoT Botnet 

Scan, MITM, DoS, Prob, U2R, 

and R2L 

99.27% 

99.97% 

99.39% 

99.99% 

99.991% 

- 

Karamollaoğlu et al. 

(2024) [27] 
PCA, BAT, SMOTE, CNN IoTID-20, BotNetIoT DoS, DDoS, botnet 99.97% - 

After a thorough literature review, several recurring themes have emerged. Researchers often utilize various datasets 

to explore IoT traffic, identify malicious network activity, and implement intrusion detection systems (IDS). Each dataset 

offers unique insights into different attack types, enriching our understanding of IoT security. Despite extensive research, 

exploration of IoT attacks using newer datasets like the CIC IoT Dataset 2022 remains limited, highlighting other 

directions to investigate. Moreover, addressing cyber threats such as Flood DoS and RTSP brute-force attacks remains 

challenging.  

In this study, we contribute to the existing literature by targeting IoT attack scenarios and assessing the effectiveness 

of ML techniques in detecting IoT network attacks, with a specific focus on flood DoS attacks and RTSP brute-force 

attacks. Notably, we leverage the CIC IoT Dataset 2022, a recent and comprehensive multi-dimensional profiling dataset 

that adds an additional perspective to this field [28].  

The key contributions of this paper include:   

• Improving the detection of network attacks in IoT by thoroughly evaluating the efficacy of ML and DL algorithms 

on a very recent dataset.  

• Extraction of two distinct types of feature sets aimed at enhancing the overall model performance.  

• A noteworthy contribution to the IoT and Cybersecurity literature, particularly given the limited number of studies 

utilizing recent datasets. 

This paper is structured as follows: Section 2 presents the Methodology used for the paper, including the dataset 

description, data pre-processing, feature selection, ML and DL algorithms, evaluation metrics, and experimental setup. 

Section 3 elaborates on the study's results and discussion. This study’s conclusion is summarized in Section 4, providing 

a comprehensive overview of our findings. 



HighTech and Innovation Journal         Vol. 5, No. 3, September, 2024 

538 

 

2. Research Methodology 

In this study, we analyzed the network traffic of IoT devices using ML and DL techniques. We focus on detecting 

Flood DoS and RSTP brute-force attacks based on normal traffic patterns. We utilized a variety of classifiers, including 

ANN, DT, GB, KNN, LR, NB, SVM, and RF, for multi-class classification on our dataset. Each IoT device connection 

is classified as Flood, Brute-force, or Normal. To evaluate the performance of these models, we used key metrics such 

as accuracy, precision, recall, and F1-score. The 80:20 ratio signifies how the dataset was partitioned, allocating 80% 

for training and 20% for testing. Additionally, we conducted two experiments using different feature sets to assess their 

significance. The methodology adopted for this study is illustrated in Figure 1, providing a clear and structured overview 

of our research approach. 

 

Figure 1. Research Methodology 

2.1. Dataset Description  

The CIC IoT Dataset 2022 is a publicly available dataset curated by the esteemed Canadian Institution for 

Cybersecurity (CIC). Dadkhah et al. [28] meticulously constructed this advanced dataset, incorporating 60 distinct IoT 

devices, for comprehensive vulnerability testing, behavioral analysis, and profiling purposes. The dataset is structured 

around six distinct experiments, each capturing network packets via Wireshark across various operational states, 

including Power, Idle, Interactions, Scenarios, Active, and Attacks.  

Our investigation contributed by focusing on two specific experiments concerning the SimCam device: the Power 

and Attack experiments. The Power experiment served as a baseline for normal traffic analysis, while the Attacks 

experiment enabled the examination and classification of Flood DoS and RSTP Brute-force attacks, providing insights 

into the device's security vulnerabilities. Initially, the dataset provided packet captures in PCAP (Packet Capture) format, 

containing essential packet attributes such as protocol name, timestamp, source and destination addresses, and supporting 

information. To ensure a comprehensive analysis and extract additional network traffic features, we conducted a series 

of preprocessing steps to ensure the depth and accuracy of our findings. Table 2 outlines the original distribution of 

packets within the dataset. 
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Table 2. Original Distribution of the Dataset’s Packets 

Class No. of Packets 

Flood DoS 885,813 

RSTP Brute-force 103,855 

Normal 675 

2.2. Dataset Pre-processing 

Before training and testing the models of interest, pre-processing was performed to convert the dataset’s raw data 

into a usable and effective format. Usually, pre-processing activities include loading, cleaning, manipulating, and 

converting data to the appropriate form for the desired study. Hence, the PCAP files of the Power and Attack experiments 

of the SimCam device were converted into CSV files using a network traffic flow generator and analyzer known as 

CICFlowMeter [16]. After conversion, each row in the CSV file represents a connection flow from start to end, and the 

tool extracted over 80 features. The CSV files were then labeled manually. Lastly, the dataset's size resulted in 13,315 

records. Table 3 displays the dataset distribution obtained after pre-processing.  

Table 3. The Dataset Distribution After Pre-processing 

Class No. of Packets 

Flood DoS 10,379 

RSTP Brute-force 2,784 

Normal 152 

Figure 2 depicts that the dataset is imbalanced as only 1.1% of the dataset composes normal traffic, and Brute-force 

records represent only 20.9% of attacks. Therefore, over and under-sampling pre-processing techniques were adopted to 

resolve the imbalance of the dataset. Under-sampling was performed on the RSTP Brute-Force class, and the records 

were randomly selected and reduced to 3,000. This prevented the model from being biased towards the majority class. 

On the other hand, both Flood DoS and Normal classes were oversampled using the Synthetic Minority Over-sampling 

Technique (SMOTE). SMOTE works by creating synthetic samples from the minority class rather than by over-sampling 

with replacement, as in the traditional approach. This was done to increase the representation of the minority classes, 

thereby improving the model's ability to detect them. Moreover, the target class was represented categorically. Thus, 

label encoding was performed on the target class: Flood DoS (1), RSTP Brute-force (0), and Normal (2). The numerical 

data was normalized to within the range of 0:1 utilizing the Min-Max method.  

 
Figure 2. Sampling Techniques Applied 

2.3. Feature Selection 

After pre-processing and converting the dataset to CSV format using the CICFlowMeter [16] tool, over 80 statistical 

features were initially extracted. To refine these features, a comprehensive feature selection process was employed, 

incorporating both Manual Feature Correlation Elimination and Recursive Feature Elimination (RFE). This process 

involved removing features with all values as zero, features with uniform values, and features with zero correlation to 

the target class. Such features were excluded because they do not contribute to the model’s detection capabilities, as they 

fail to reveal any distinguishable behavior relevant to the target class. Subsequently, two distinct experiments were 

conducted to evaluate the impact of different feature sets on the model’s performance and to identify the most effective 

features for the detection process. Table 4 presents the selected features, their descriptions, and their correlations to the 

target class. 
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Table 4. Features Selected and Their Description 

Features Selected Description Correlation 

Protocol It denotes protocol 0.162641 

Flow IAT Max The maximum time interval separating two consecutively transmitted packets within the flow. 0.242171 

Fwd Pkts/s The rate of forward packets per second 0.166998 

Bwd Pkts/s The rate of backward packets per second -0.309762 

Pkt Len Max The maximum packet length 0.877138 

Fwd Act Data Pkts The count of packets in the forward direction, each containing a minimum of 1 byte of TCP data payload. 0.384332 

In the first experiment, six features were selected by eliminating those with high inter-feature correlation, thereby 
retaining only those features with a strong individual impact on the target class. This approach avoids redundant 
information and reduces algorithmic complexity. 

Meanwhile, a further feature selection technique, RFE, was applied in the second experiment, and only three features 

from Experiment 1 were used. Table 5 illustrates the features used in each experiment. As the results depict, the feature 
with the highest correlation to the target class, the Pkt Len Max, stands out as integral for analyzing and identifying the 
attacks performed against IoT devices. The significance of these findings is substantial, as they demonstrate the efficacy 
of careful feature selection in enhancing the detection performance of models, particularly in the context of IoT security. 
The study provides a robust foundation for developing more efficient and accurate detection mechanisms by prioritizing 

features that offer the most distinctive insights into attack patterns. 

Table 5. Set of Features Used in Each Experiment 

Experiment 1: Features Selected with 

Manual Correlation Elimination 

Experiment 2: Features in 

Experiment 1 After Conducting RFE 

Protocol  

Flow IAT Max  

Fwd Pkts/s Fwd Pkts/s 

Bwd Pkts/s Bwd Pkts/s 

Pkt Len Max Pkt Len Max 

Fwd Act Data Pkts  

2.4. ML and DL Algorithms 

In this section, the features selected are fed into the classifiers and well-known ML and DL algorithms that were 
applied in this study are analyzed and investigated. The algorithms employed in this study include ANN, DT, GB, KNN, 
LR, NB, SVM, and RF. Furthermore, the evaluation of each algorithm's performance included analyzing vital metrics 
such as Accuracy, Precision, Recall, and F1-score. 

2.4.1. Artificial Neural Network 

A renowned model in the field of perception is the Artificial Neural Network (ANN), modeled after the human brain 

structure. Many AI scientists believe that understanding how the human brain functions can help in defining solutions 
for computational problems such as formal algorithms and implementing them. The brain is composed of processing 
units called neurons that are largely connected through synapses. Correspondingly, an ANN model is a mathematical 
representation that functions like the human brain. The network neurons are arranged into input, hidden, and output 
layers, as depicted in Figure 3. This model is renowned as a Feed-Forward Neural Network (FFNN). ANN is non-
parametric and finds application in classification and regression problems [29, 30].  

 

Figure 3. The Layers of Neurons in ANN 
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2.4.2. Decision Tree 

A decision tree (DT), a hierarchical data structure that employs the divide-and-conquer approach, serves as a 

nonparametric method adeptly applied to both classification and regression problems. A DT is a model for supervised 

learning where a sequence of recursive splits to identify the desired local region with the fewest steps. DT are composed 

of internal nodes and terminal leaves. A test function donated as fm(x) is applied at each node m in a DT. The branches 

are labeled with discrete outcomes, and for a given input, a test is performed at each node. Subsequently, one of the 

branches is selected based on the results obtained. The process is recursively repeated starting from the root until a leaf 

node is achieved which outcomes in an output value. Figure 4 shows an abstract view of the Decision Tree process. 

Moreover, the non-parametric nature of decision trees causes them to develop branches and leaves as they learn, and this 

growth is contingent upon the complexity of the problem being addressed [29]. 

 

Figure 4. Decision Tree Process 

2.4.3. Gradient Boosting 

A Gradient Boosting, classified within the ensemble machine learning category, employs a suite of algorithms to 

merge multiple weak learning models (predictors with limited accuracy), forming a robust predictive model 

characterized by a high accuracy rate. The Gradient Boosting model depends on a loss function aimed at minimizing 

errors. In each iteration, the model attempts to enhance the accuracy by reducing the errors fed into it by its predecessor. 

Hence, during each iteration, a new model is developed by incorporating the residual errors from the previous model, as 

opposed to fitting an entirely new model [31] as depicted in Figure 5. 

 

Figure 5. The Gradient Boosting Procedure 

2.4.4. K-Nearest Neighbor 

KNN algorithm is a straightforward ML technique utilized for classification and regression. The construction of a 

KNN model involves retaining the training dataset. When predicting a new data point, the algorithm identifies its nearest 

neighbor or neighbors in the training dataset. Initially, the algorithm typically starts by finding only the single nearest 

neighbor. However, we can consider a random number of neighbors, as the name KNN indicates. That being done, the 

algorithm uses voting to make a prediction. Hence, for a test point, the number of neighbors is counted and then assigned 

to the majority class among the KNN [32] as shown in Figure 6. 
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Figure 6. KNN Procedure for (k = 3) 

2.4.5. Logistic Regression 

Logistic Regression is the foremost statistical analysis algorithm used to predict a binary (0,1) outcome in research 

based on one or more predictors (independent variables). Typically, LR is used to predict the probability that the outcome 

or dependent variable equals 1, categorize outcomes, and analyze risks and odds associated with the dependent variables. 

Its ability to achieve these three goals makes it a unique algorithm [33]. 

 2.4.6. Naïve Bayes 

NB classifier is like linear models. However, NB models tend to train faster. The efficiency of the NB model lies in 

its ability to learn parameters and collect statistics from each feature by exploring each feature individually. Therefore, 

the NB classifier can be trained to make predictions quickly, and the training process is easy to understand. The model 

works well on high-dimensional sparse data, is robust to parameters, and can be used as a baseline [32]. 

2.4.7. Support Vector Machine 

SVM is an advanced extension that enables the creation of complex models not simply identified by hyperplanes and 

input space. The SVM model is used in regression (SVR) and classification (SVC). During training, the model discerns 

the relevance per training data point in delineating the decision boundary between two classes. Generally, a selective 

subset of training points, specifically those residing on the border between classes, influences the decision boundary—

these are referred to as support vectors, as depicted in Figure 7. In prediction, the algorithm measures the proximity of 

each support vector, guiding the classification decision accordingly [32]. 

 

Figure 7. SVM Procedure 

2.4.8. Random Forest 

Random Forest (RF) is a widely adopted ensemble method primarily designed for classification. In contrast to DT, 

the RF model grows multiple trees instead of a single tree. This approach enhances the randomness of samples, mitigating 

the overfitting problem commonly encountered by DT models. As a result, RF provides an excellent predictive model 
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known for its reliable predictions. The functioning of RF is akin to Decision Trees; however, the concluding prediction 

is nominated based on the majority vote from all trees. Every tree provides a classification or a "vote," in a Random 

Forest, the algorithm selects the classification that receives the most votes from all the trees in the forest, as shown in 

Figure 8. In the case of regression, the method involves averaging the outcomes from all trees [34]. 

 

Figure 8. Random Forest Procedure 

2.5. Evaluation Metrics 

When evaluating the effectiveness of ML and DL models, it's crucial to select performance metrics tailored to the 

specific problem. The precision of our study's results was ensured by evaluating them using parameters of the confusion 

matrix - namely Accuracy, Precision, Recall, and F-Measure. Accuracy, a standard statistic, is computed as the ratio of 

the sum of the True Positive (TP) and True Negative (TN) (Samples correctly classified) to the total number of samples 

as written in Equation 1. A higher accuracy indicates a better performance of the model utilized. Importantly, it is 

possible to calculate Precision and Recall on average and per class, allowing for adaptability to different scenarios [28].    

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

Precision, a pivotal metric, intricately assesses the model's accuracy in correctly identifying samples allocated to a 

specific attack or normal traffic category within the total samples assigned to that category. The precision computation, 

as articulated in Equation 2, establishes a ratio of True Positive (TP) samples to the combined count of False Positive 

(FP) and True Positive (TP) samples. This ratio offers a comprehensive understanding of precision concerning the 

entirety of detected samples. A greater Precision signifies a reduced false positive rate, underscoring its paramount 

importance, especially in scenarios where the cost associated with a false positive is significantly elevated [28].  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

Moreover, within the set of all samples that genuinely link to the attack (or normal traffic), Recall is measured as the 

ratio of accurately identified samples to those specifically belonging to the attack (or normal traffic). The calculation, 

expressed by Equation 3, involves determining Recall through the division of True Positives (TP) by the sum of True 

Positives (TP) and False Negatives (FN). It's worth noting that the presence of False Negatives significantly affects the 

Recall value, adding a layer of complexity and precision to the process. The relevance of Recall becomes particularly 

evident in scenarios characterized by a notably high False Negative (FN) rate, making it a pivotal factor in the selection 

of the optimal model [28]. 
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𝑃𝑅𝑒𝑐𝑎𝑙𝑙 (Sensitivity) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

Lastly, the F-measure, also known as the F-score, is calculated using the weighted harmonic mean of Recall and 

Precision, as shown in Equation 4. This metric is particularly useful for evaluating imbalanced data [28]. 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃 ×  𝑅

𝑃 + 𝑅
 =

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

2.6. Experimental Setup 

Several models were developed employing both ML and DL algorithms to carry out the mentioned experiments. 

Python 3.7.13 was used to create the models on the Google Collab notebook platform. 9,000 records were used for 

the experiments with the target class consisting of three labels: "Normal," " Brute Force," or "Flood." A different 

set of features were meticulously utilized for each experiment. The initial experiment incorporated six features - 

Protocol, Flow IAT Max, Fwd Pkts/s, Bwd Pkts/s, Pkt Len Max, and Fwd Act Data Pkts. Subsequently, in the 

second experiment, only three features were utilized - Fwd Pkts/s, Bwd Pkts/s, and Pkt Len Max. Grid Search with 

Cross Validation was applied in both experiments to fine-tune the model's parameters. Like K-fold cross validation, 

CV parameter selection uses different sets for evaluation. Furthermore, Grid Search attempts every possible 

combination of settings until it obtains the optimal value. The primary goal is to enhance the results' precision while 

reassuring their validity.  

A single input layer represents the number of features, with the first experiment incorporating six features while the 

second experiment utilizes three features in the construction of the ANN model. Subsequently, three hidden layers were 

established, culminating in a single output layer with three neurons. The Rectified Linear Unit (ReLU) activation 

function is applied to the hidden layers, while the SoftMax function is employed for the output layer. The optimal 

parameter values for each algorithm utilized in this study are shown in Table 6. 

Table 6. Models Parameters Optimization 

Model Best Parameters Optimal Value 

ANN 

Quantity of Hidden Layers 

Quantity of Neurons in Hidden Layers 

Activation Function applied in Hidden Layers 

Quantity of Neurons in the Output Layer 

3 

96,64 and 16 

ReLU 

3 

Decision Tree 
Criterion 

Max Depth 

gini 

10 

Gradient Boosting 

Max Depth 

Max Features 

No. of Estimators 

10 

log2 

5 

KNN No. of Neighbors 2 

Logistic Regression 
C 

Penalty 

0.1 

None 

Naïve Bayes - - 

SVM 

C 

Gamma 

Kernel 

100 

1 

RBF 

Random Forest 

Bootstrap 

Max Depth 

Max Features 

No. of Estimators 

True 

10 

Auto 

11 

3. Results and Discussions 

In both experiments, the performance of the multi-class Machine ML and DL models was assessed based on metrics 

such as Accuracy, Precision, Recall, and F-measure. Each experiment employed a distinct set of features. Table 7 

demonstrates the evaluation results of each model. 
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Table 7. Experiments Results 

Model Evaluation Matrix Experiment 1 Experiment 2 

ANN 

Accuracy 95.39% 94.39% 

Precision 0.96 0.95 

Recall 0.95 0.94 

F-measure 0.95 0.94 

Decision Tree 

Accuracy 95.72% 95.5% 

Precision 0.96 0.96 

Recall 0.96 0.95 

F-measure 0.96 0.95 

Gradient Boosting 

Accuracy 95.94% 95.28% 

Precision 0.96 0.96 

Recall 0.96 0.95 

F-measure 0.96 0.95 

KNN 

Accuracy 95.28% 95.06% 

Precision 0.95 0.95 

Recall 0.95 0.95 

F-measure 0.95 0.95 

Logistic Regression 

Accuracy 92.94% 91.17% 

Precision 0.94 0.91 

Recall 0.93 0.91 

F-measure 0.93 0.91 

Naïve Bayes 

Accuracy 84.56% 79.67% 

Precision 0.88 0.86 

Recall 0.84 0.80 

F-measure 0.85 0.78 

SVM 

Accuracy 95.5% 92.28% 

Precision 0.96 0.92 

Recall 0.95 0.92 

F-measure 0.95 0.92 

Random Forest 

Accuracy 95.61% 95.17% 

Precision 0.96 0.95 

Recall 0.96 0.95 

F-measure 0.96 0.95 

Table 7 shows that most models achieved excellent and consistent results in both experiments. There are slight 

differences in the performance metrics between experiment 1 and experiment 2 across all models. However, in 

experiment 1, GB stood out with the most favorable outcomes across all evaluation metrics, achieving an accuracy of 

95.94%. This indicated its effectiveness in correctly classifying instances. This can be attributed to GB's unique 

advantages, particularly its flexibility in parameter tuning options and loss functions, which allow it to adapt 

exceptionally well to the task at hand [31].  

Additionally, as depicted in Figure 9, all models demonstrated improved performance in the initial experiment with 

six features compared to the second one with only three features, where the performance slightly declined by a 

percentage ranging from 0.22% to 4.89%. Despite this, we still obtained excellent results, further underscoring the 

importance of the three features: Fwd Pkts/s, Bwd Pkts/s, and Pkt Len Max in IoT device attack detection. Fwd Pkts/s 

and Bwd Pkts/s denote the rate of forward and backward packets per second, respectively, while Pkt Len Max indicates 

the maximum length of a packet. After applying RFE in experiment 2, these features showed a high correlation to the 

target class, with Pkt Len Max being the highest among them, which confirms its significance for the effective detection 

of IoT attacks.  

The following are the key findings regarding the performance of the different models. ANN demonstrated high 

accuracy, precision, recall, and F-measure in both experiments, indicating its robustness and effectiveness in 

classification tasks. There's a slight drop in performance from Experiment 1 to Experiment 2, which might be due to 

variations in the dataset. DT is sensitive to changes in the input data and feature set. Even minor variations in the dataset 
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or feature selection process can impact the tree's structure and its classification decisions. Therefore, the decrease in 

performance for DT from Experiment 1 to Experiment 2 could result from sensitivity to changes in the feature set. GB 

continues to perform well in Experiment 1 and Experiment 2 despite a reduction in the number of features. This indicates 

that GB can effectively adapt to changes in feature sets while maintaining its predictive power. GB combines multiple 

weak learners to form a strong ensemble model, allowing it to capture complex relationships between features and target 

variables. Despite the complexity, GB manages to generalize well and achieve high performance on unseen data. False 

negatives, where attacks go undetected, pose a significant risk to IoT security, allowing malicious activities to persist 

undetected. KNN's balanced recall ensures that it effectively captures most of the true positive instances (actual attacks), 

minimizing the chances of false negatives and improving the overall detection capability of the system. LR balances 

performance, interpretability, and computational efficiency in IoT attack detection. While it may not achieve the highest 

accuracy, its transparency, simplicity, and computational efficiency make it a valuable tool for classification tasks in 

IoT environments, especially when interpretability and resource constraints are important considerations. NB exhibits 

low accuracy, precision, recall, and F-measure among the models in both experiments. NB assumes that features are 

conditionally independent given the class label. In practice, this assumption is often violated, especially in complex 

datasets like those involving IoT attacks. This violation can lead to suboptimal performance, as seen in our results. The 

performance drop between the two experiments highlights SVM's sensitivity to the feature selection process. SVM relies 

on a well-chosen set of features to create a robust separating hyperplane. Removing critical features can impact its ability 

to classify instances accurately. RF shows minimal performance degradation when transitioning from Experiment 1 to 

Experiment 2 despite the reduction in features. Its strengths in scalability, non-linear relationship modeling, and handling 

missing data further enhance its suitability for real-world IoT security applications. 

IoT attack detection datasets often suffer from class imbalances. Ensuring that the models do not become biased 

towards the majority class was a crucial challenge that was addressed in our study. Moreover, the experiments also 

revealed other challenges, particularly related to feature selection sensitivity and computational complexity. While 

models such as GB and RF showed robustness and high performance, others like SVM and NB highlighted the critical 

impact of feature selection. Addressing these challenges requires careful tuning. Moreover, our study was conducted in 

a simulated environment rather than a real-world setting. It is critical to evaluate the robustness of the models to 

adversarial attacks in the real world. IoT devices have limited resources and computing capabilities. Therefore, the ML 

models built for IoT attack detection must be efficient and lightweight to avoid performance degradation.  

 

Figure 9. Results Comparison 

The confusion matrix was also analyzed for both experiments, as shown in Figure 10(a) and (b), to understand better 

the types of errors made by the highest accuracy model GB while predicting testing data. The values for correct and 

incorrect predictions are computed and broken down by each class: class (0) represents RSTP Brute-Force attack, (1) 

Flood attack, and (2) Normal. The testing data portion contained 1,800 instances divided approximately the same 

between classes; the diagonal of the confusion matrix depicts the instances that were accurately predicted for each class, 

while what is left indicates wrong predictions. As illustrated in Figure 10(a) and (b), most instances were classified 

correctly. However, the Flood attack class and RSTP Brute-Force attack were mostly correctly predicted with few wrong 

predictions. On the other hand, the normal class showed some wrong predictions, where 67 out of 594 and 78 out of 598 

were predicted as the RSTP Brute-Force attack class in the first and second experiments, respectively. This indicates 

that our model had more ability to classify RSTP Brute-Force and Flood attacks on the IoT devices in the CIC IoT 

Dataset 2022 [28]. 
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                     (a)                                                (b) 

Figure 10. represents a confusion matrix in which (a) Confusion Matrix for Experiment 1 Using GB Model; (b) Confusion 

Matrix for Experiment 2 Using GB Model 

4. Conclusions 

The Internet of Things (IoT) has witnessed a significant proliferation of devices, users, and technological 

advancements in recent years, revolutionizing our daily activities. However, this convenience is accompanied by 

heightened security concerns, primarily due to the escalating threat of cyberattacks. In response to these critical 

challenges, our research is dedicated to detecting IoT network attacks, specifically Flood DoS and RSTP brute-force 

attacks, using Machine Learning (ML) and Deep Learning (DL) methodologies. This research is vital for safeguarding 

the security of IoT devices, a crucial aspect of today's digital landscape. Our study begins with an introduction and a 

review of existing literature, analyzing current research to identify gaps and propose a new perspective on this field. 

Leveraging the CIC IoT Dataset 2022, a multi-dimensional IoT profiling dataset developed for Cybersecurity, we 

conducted two meticulous experiments utilizing distinct feature sets: one comprising six features and another with three. 

The dataset underwent preprocessing with CICFlowMeter to extract over 80 statistical features. To tackle the challenge 

of dataset imbalance, we utilized under-sampling and over-sampling techniques to ensure that the dataset was not biased 

toward the majority class while ensuring the reliability and validity of our findings. Feature selection was conducted 

through Manual Feature Correlation Elimination and Recursive Feature Elimination (RFE). Pkt Len Max, demonstrating 

the strongest correlation with the target class, was identified as significant for analysis and attack detection due to its 

association with network attacks. This feature, representing the maximum packet length in a network flow, is a crucial 

indicator of potential network attacks. Subsequently, the dataset was partitioned into an 80:20 ratio for training and 

testing purposes. Eight supervised algorithms—ANN, DT, GB, KNN, LR, NB, SVM, and RF—were utilized, and their 

efficacy was evaluated using key metrics, including Accuracy, Precision, Recall, and F1-score. Notably, Grid Search, 

with cross-validation, was employed for parameter tuning, enhancing the robustness of our approach. 

Our findings from the initial and subsequent experiments were promising. The GB algorithm achieved an impressive 

accuracy of 95.94%, while the DT algorithm attained an equally commendable accuracy of 95.5% in the subsequent 

experiment. Analysis of the confusion matrix revealed the superior performance of the GB model in classifying Flood 

and RSTP brute-force attacks in both instances. These results demonstrate the effectiveness of our suggested approach, 

ML and DL techniques, in enhancing the detection of such attacks and have implications for the field of IoT network 

security. By accurately identifying and classifying these attacks, we can strengthen the security of IoT networks, thereby 

protecting the privacy and integrity of IoT devices and the data they generate. This underscores the pivotal role of ML 

and DL methodologies in bolstering IoT network security. 

While providing valuable insights using eight supervised classifiers, we are still eager to explore additional 

algorithms in future research, which opens up numerous opportunities to enhance our detection capabilities further. The 

potential for future advancements, such as integrating ML algorithms to construct a multi-layered model, is promising 

and could significantly improve detection performance. Classifying and detecting new attacks and contributing to the 

ever-evolving domains of IoT and Cybersecurity is another direction to explore.  
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