Content Automation in Marketing Research: A Bibliometric Analysis using VOSviewer

Thadathibesra Phuthong, Ratchamongkhon Thonglor, Nontouch Srisuksa

Abstract


Objectives: This study conducted a comprehensive assessment of content automation in marketing research using bibliometric analysis spanning 20 years from 2004 to 2024. The primary influential factors, topics, and areas of research were analyzed to determine future research paths. Methods/Analysis: Sample selection and data collection were conducted using the Scopus database. The initial dataset was adjusted by applying certain inclusion and exclusion criteria. The final dataset consisting of 149 articles in the RIS format was loaded into the VOSviewer program to perform a bibliometric analysis. Findings: The results revealed key findings, including the highest citation-counting papers, the most common research format, the research field, the year of publication, collaboration countries, the journal, prominent authors, popular themes, areas for further investigation, and the intellectual framework of current research on the topic. Novelty/ Improvement:Four areas were identified for future research: marketing automation as digital commerce content marketing, artificial intelligence for digital marketing transformation, automation and optimization for personalized advertising content, and automatic knowledge discovery. The temporal development of these issues was also examined to offer valuable insights into the changing focus of academic interest over time and establish a foundation for future investigations.

 

Doi: 10.28991/HIJ-2024-05-03-019

Full Text: PDF


Keywords


Marketing Research Automation; Content Marketing; Content Automation; Research Trends; VOSviewer Analysis.

References


Bubphapant, J., & Brandão, A. (2024). Content marketing research: A review and research agenda. International Journal of Consumer Studies, 48(1), e12984. doi:10.1111/ijcs.12984.

Park, K., Kim, H. J., & Kim, J. M. (2023). The effect of mobile device usage on creating text reviews. Asia Pacific Journal of Marketing and Logistics, 35(4), 1011-1029. doi:10.1108/APJML-11-2021-0838.

Kitsios, F., Mitsopoulou, E., Moustaka, E., & Kamariotou, M. (2022). User-Generated Content in Social Media: A Twenty-Year Bibliometric Analysis in Hospitality. Information (Switzerland), 13(12), 574. doi:10.3390/info13120574.

Salonen, A., Mero, J., Munnukka, J., Zimmer, M., & Karjaluoto, H. (2024). Digital content marketing on social media along the B2B customer journey: The effect of timely content delivery on customer engagement. Industrial Marketing Management, 118, 12-26. doi:10.1016/j.indmarman.2024.02.002.

Odoom, R. Digital content marketing and consumer brand engagement on social media- do influencers’ brand content moderate the relationship? Journal of Marketing Communications, 1-24. doi:10.1080/13527266.2023.2249013.

Benslama, T., & Jallouli, R. (2024). An Empirical Study of the Impact of Social Media Data Analytics on Marketing Strategy. Journal of Telecommunications and the Digital Economy, 12(1), 575-594. doi:10.18080/jtde.v12n1.830.

Aljarah, A., Sawaftah, D., Ibrahim, B., & Lahuerta-Otero, E. (2024). The differential impact of user- and firm-generated content on online brand advocacy: customer engagement and brand familiarity matter. European Journal of Innovation Management, 27(4), 1160-1181. doi:10.1108/EJIM-05-2022-0259.

Hasani, V. V., Zeqiri, J., Todorovik, T., Jaziri, D., & Toska, A. (2023). Digital Content Marketing and EWOM: A Mediational Serial Approach. Business Systems Research, 14(2), 24-43. doi:10.2478/bsrj-2023-0010.

Kshetri, N., Dwivedi, Y. K., Davenport, T. H., & Panteli, N. (2024). Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda. International Journal of Information Management, 75, 102716. doi:10.1016/j.ijinfomgt.2023.102716.

Rosário, A. T., & Dias, J. C. (2023). Marketing Strategies on Social Media Platforms. International Journal of e-Business Research, 19(1), 316969. doi:10.4018/IJEBR.316969.

Ho, J., Pang, C., & Choy, C. (2020). Content marketing capability building: a conceptual framework. Journal of Research in Interactive Marketing, 14(1), 133-151. doi:10.1108/JRIM-06-2018-0082.

Terho, H., Mero, J., Siutla, L., & Jaakkola, E. (2022). Digital content marketing in business markets: Activities, consequences, and contingencies along the customer journey. Industrial Marketing Management, 105, 294-310. doi:10.1016/j.indmarman.2022.06.006.

Eggers, F., Beke, F. T., Verhoef, P. C., & Wieringa, J. E. (2023). The Market for Privacy: Understanding How Consumers Trade Off Privacy Practices. Journal of Interactive Marketing, 58(4), 341-360. doi:10.1177/10949968221140061.

Fan, J., Peng, L., Chen, T., & Cong, G. (2024). Mining the impact of social media information on public green consumption attitudes: a framework based on ELM and text data mining. Humanities and Social Sciences Communications, 11(1), 184. doi:10.1057/s41599-024-02649-7.

Dam, N. A. K., Dinh, T. L., & Menvielle, W. (2024). Applying customer intelligence in marketing: a holistic approach. International Journal of Applied Decision Sciences, 17(2), 206-229. doi:10.1504/IJADS.2024.137003.

Agnihotri, R., Afshar Bakeshloo, K., & Mani, S. (2023). Social media analytics for business-to-business marketing. Industrial Marketing Management, 115, 110-126. doi:10.1016/j.indmarman.2023.09.012.

Al-Dmour, H., Saad, N., Basheer Amin, E., Al-Dmour, R., & Al-Dmour, A. (2023). The influence of the practices of big data analytics applications on bank performance: filed study. VINE Journal of Information and Knowledge Management Systems, 53(1), 119-141. doi:10.1108/VJIKMS-08-2020-0151.

Gimadeev, G. (2023). Application of the simulation modeling method for solving content marketing automation tasks. Technoeconomics, 2(4-7), 16–24. doi:10.57809/2023.2.4.7.2.

Brar, T. P. S. (2021). Digital Marketing Performance: Understanding the Challenges and Measuring the Outcomes. Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing, edited by Amandeep Singh. IGI Global, 51-63. doi:10.4018/978-1-7998-7231-3.ch004.

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. doi:10.1016/j.jbusres.2021.04.070.

Munoz-Leiva, F., Porcu, L., & Del Barrio-Garcıa, S. (2015). Discovering prominent themes in integrated marketing communication research from 1991 to 2012: A co-word analytic approach. International Journal of Advertising, 34(4), 678-701. doi:10.1080/02650487.2015.1009348.

Donthu, N., Kumar, S., Ranaweera, C., Pattnaik, D., & Gustafsson, A. (2022). Mapping of Journal of Services Marketing themes: a retrospective overview using bibliometric analysis. Journal of Services Marketing, 36(3), 340-363. doi:10.1108/JSM-04-2020-0122.

Kyrousi, A. G., Koronaki, E., & Zotou, A. Y. (2022). Marketing communication in luxury research: a framework-based literature review and research agenda. Journal of Marketing Communications, 28(5), 560-589. doi:10.1080/13527266.2022.2095581.

Muñoz-Leiva, F., Rodríguez-López, M. E., & García-Martí, B. (2022). Discovering prominent themes of the application of eye tracking technology in marketing research. Cuadernos de Gestion, 22(1), 97-113. doi:10.5295/CDG.211516FM.

Chandra, S., Verma, S., Lim, W. M., Kumar, S., & Donthu, N. (2022). Personalization in personalized marketing: Trends and ways forward. Psychology and Marketing, 39(8), 1529-1562. doi:10.1002/mar.21670.

Srivastava, M., Pandey, N., & Saini, G. K. (2022). Reference price research in marketing: a bibliometric analysis. Marketing Intelligence and Planning, 40(5), 604-623. doi:10.1108/MIP-02-2022-0049.

Rathi, R., Garg, R., Kataria, A., & Chhikara, R. (2022). Evolution of luxury marketing landscape: a bibliometric analysis and future directions. Journal of Brand Management, 29(3), 241-257. doi:10.1057/s41262-022-00273-x.

Pham, X. L., Nguyen, P. M. B., & Truong, G. N. T. (2022). A Co-Word and Co-Citation Analysis of Digital Marketing Research. International Journal of Service Science, Management, Engineering, and Technology, 13(1), 1-20. doi:10.4018/IJSSMET.304817.

Tanwar, A. S., Chaudhry, H., & Srivastava, M. K. (2022). Trends in Influencer Marketing: A Review and Bibliometric Analysis. Journal of Interactive Advertising, 22(1), 1-27. doi:10.1080/15252019.2021.2007822.

Jayaswal, P., & Parida, B. (2023). Past, present and future of augmented reality marketing research: a bibliometric and thematic analysis approach. European Journal of Marketing, 57(9), 2237-2289. doi:10.1108/EJM-05-2022-0397.

Joshi, Y., Lim, W. M., Jagani, K., & Kumar, S. (2023). Social media influencer marketing: foundations, trends, and ways forward. Electronic Commerce Research, 1-55. doi:10.1007/s10660-023-09719-z.

Antunes, I. F. S., & Veríssimo, J. M. C. (2024). A bibliometric review and content analysis of research trends in sensory marketing. Cogent Business and Management, 11(1), 2338879. doi:10.1080/23311975.2024.2338879.

Ramos, R., Rita, P., & Vong, C. (2024). Mapping research in marketing: trends, influential papers and agenda for future research. Spanish Journal of Marketing - ESIC, 28(2), 187-206. doi:10.1108/SJME-10-2022-0221.

Musa, H. G., Fatmawati, I., Nuryakin, N., & Suyanto, M. (2024). Marketing research trends using technology acceptance model (TAM): a comprehensive review of researches (2002–2022). Cogent Business and Management, 11(1), 2329375. doi:10.1080/23311975.2024.2329375.

Polat, E., Çelik, F., Ibrahim, B., & Gursoy, D. (2024). Past, present, and future scene of influencer marketing in hospitality and tourism management. Journal of Travel and Tourism Marketing, 41(3), 322-343. doi:10.1080/10548408.2024.2317741.

Han, R., Lam, H. K. S., Zhan, Y., Wang, Y., Dwivedi, Y. K., & Tan, K. H. (2021). Artificial intelligence in business-to-business marketing: a bibliometric analysis of current research status, development and future directions. Industrial Management and Data Systems, 121(12), 2467-2497. doi:10.1108/IMDS-05-2021-0300.

Binh Nguyen, P. M., Pham, X. L., & To Truong, G. N. (2023). A bibliometric analysis of research on tourism content marketing: Background knowledge and thematic evolution. Heliyon, 9(2), e13487. doi:10.1016/j.heliyon.2023.e13487.

Guerrero Velástegui, C. A., Infante Paredes, R. E., Peñaherrera Zambrano, S. X., & Herrera, J. B. (2024). A bibliometric analysis of literature trends in content marketing and content managers. Sapienza, 5(2), e24023. doi:10.51798/sijis.v5i2.734.

Rodrigues, S. P., van Eck, N. J., Waltman, L., & Jansen, F. W. (2014). Mapping patient safety: a large-scale literature review using bibliometric visualisation techniques. BMJ Open, 4(3), e004468. doi:10.1136/bmjopen-2013-004468.

Gallego-Valero, L., Moral-Parajes, E., & Román-Sánchez, I. M. (2021). Wastewater Treatment Costs: A Research Overview through Bibliometric Analysis. Sustainability, 13(9), 5066. doi:10.3390/su13095066.

Hulland, J., & Houston, M. B. (2020). Why systematic review papers and meta-analyses matter: an introduction to the special issue on generalizations in marketing. Journal of the Academy of Marketing Science, 48(3), 351-359. doi:10.1007/s11747-020-00721-7.

Bukar, U. A., Sayeed, M. S., Razak, S. F. A., Yogarayan, S., Amodu, O. A., & Mahmood, R. A. R. (2023). A method for analyzing text using VOSviewer. MethodsX, 11, 102339. doi:10.1016/j.mex.2023.102339.

Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of informetrics, 12(4), 1160-1177. doi:10.31235/osf.io/42nkm.

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. doi:10.1007/s11192-009-0146-3.

Kraus, S., Breier, M., Lim, W. M., Dabić, M., Kumar, S., Kanbach, D, & Ferreira, J. J. (2022). Literature reviews as independent studies: guidelines for academic practice. Review of Managerial Science, 16(8), 2577-2595. doi:10.1007/s11846-022-00588-8.

Kirby, A. (2023). Exploratory Bibliometrics: Using VOSviewer as a Preliminary Research Tool. Publications, 11(1), 10. doi:10.3390/publications11010010.

Fisch, C., & Block, J. (2018). Six tips for your (systematic) literature review in business and management research. Management Review Quarterly, 68(2), 103-106. doi:10.1007/s11301-018-0142-x.

Pittaway, L., Holt, R., & Broad, J. (January 7, 2014). Synthesising knowledge in entrepreneurship research - the role of systematic literature reviews. In Synthesising Knowledge in Entrepreneurship Research: The Role of Systematic Literature Reviews, In Chell, E. and Karatas-Ozkan, M., Handbook of Research on Small Business and Entrepreneurship, Edward Elgar, Cheltenham (pp. 83-105). doi:10.4337/9781849809245.00014.

Järvinen, J., & Taiminen, H. (2016). Harnessing marketing automation for B2B content marketing. Industrial Marketing Management, 54, 164-175. doi:10.1016/j.indmarman.2015.07.002.

Metwally, A., Agrawal, D., & Abbadi, A. E. (2007). Detectives: detecting coalition hit inflation attacks in advertising networks streams. Proceedings of the 16th international conference on World Wide Web, 241–250. doi:10.1145/1242572.1242606.

Vysotska, V., Fernandes, V.B., & Emmerich, M. (2018). Web Content Support Method in Electronic Business Systems. International Conference on Computational Linguistics and Intelligent Systems (COLINS), 20-41.

Weisbrich, S., & Owens, C. (2016). The Creative Challenge. In O. Busch (Ed.), Programmatic Advertising: The Successful Transformation to Automated, Data-Driven Marketing in Real-Time: Springer International Publishing, 123-130. doi:10.1007/978-3-319-25023-6_10.

Bashynska, I., Lytovchenko, I., & Kharenko, D. (2019). Sales tunnels in messengers as new technologies for effective internet-marketing in tourism and hospitality. International Journal of Innovative Technology and Exploring Engineering, 8(12), 594-598. doi:10.35940/ijitee.L3470.1081219.

Lies, J. (2021). Digital marketing: Incompatibilities between performance marketing and marketing creativity. Journal of Digital and Social Media Marketing, 8(4), 376-386.

Riedl, M. O. (2010). Scalable personalization of interactive experiences through creative automation. Computers in Entertainment, 8(4), 26. doi:10.1145/1921141.1921146.

Gera, S., & Sinha, A. (2022). T-Bot: AI-based social media bot detection model for trend-centric twitter network. Social Network Analysis and Mining, 12(1), 76 doi:10.1007/s13278-022-00897-6.

Zeeshan, M., & Saxena, K. (2020). Explorative Study of Artificial Intelligence in Digital Marketing. Lecture Notes on Data Engineering and Communications Technologies, 49, 968-978. doi:10.1007/978-3-030-43192-1_107.

Semeradova, T., & Weinlich, P. (2019). Computer Estimation of Customer Similarity with Facebook Lookalikes: Advantages and Disadvantages of Hyper-Targeting. IEEE Access, 7, 153365-153377, 8877755. doi:10.1109/ACCESS.2019.2948401.

Zhang, C., Zhou, J., Zang, X., Xu, Q., Yin, L., He, X., & Dou, D. (2021). CHASE: Commonsense-Enriched Advertising on Search Engine with Explicit Knowledge. 30th ACM International Conference on Information and Knowledge Management, CIKM 2021, 173355, 4352 – 4361. doi:10.1145/3459637.3481902.

Remondes, J., Madeira, P., & Alves, C. (2024). Connecting with consumers through effective personalization and programmatic advertising. IGI Global, Pennsylvania, United States. doi:10.4018/978-1-6684-9146-1.

Jain, A., Barua, K., & Barbate, M. (2022). Role of Data Science in Programmatic Advertising. In Studies in Big Data, 114, 33-46. doi:10.1007/978-981-19-5154-1_3.

Sikos, L. F. (2015). Mastering structured data on the semantic web: From HTML5 microdata to linked open data. Apress, New York City, United States. doi:10.1007/978-1-4842-1049-9.

Kühl, N., Mühlthaler, M., & Goutier, M. (2020). Supporting customer-oriented marketing with artificial intelligence: automatically quantifying customer needs from social media. Electronic Markets, 30(2), 351-367. doi:10.1007/s12525-019-00351-0.

Churyn, L., Kowalska-Styczeń, A., Burov, Y., Berko, A., Vasevych, A., Pelekh, I., & Ryshkovets, Y. (2019). Heterogeneous data with agreed content aggregation system development. In M. Emmerich, V. Lytvyn, I. Yevseyeva, V. Basto-Fernandes, D. Dosyn, & V. Vysotska (Eds.), Modern machine learning technologies and data science: Workshop of the 8th international conference on “Mathematics. Information Technologies. Education”, MoMLeT and DS 2019, Shatsk, Ukraine.

Resnick, M. L., & Sanchez, J. (2004). Effects of organizational scheme and labeling on task performance in product-centered and user-centered retail Web sites. Human factors, 46(1), 104–117. doi:10.1518/hfes.46.1.104.30390.

Szelagowski, M., & Lupeikiene, A. (2020). Business Process Management Systems: Evolution and Development Trends. Informatica (Netherlands), 31(3), 579-595. doi:10.15388/20-INFOR429.

Oro, E., Ruffolo, M., & Pupo, F. (2020). A cognitive automation approach for a smart lending and early warning application. Workshops of the 23rd International Conference on Extending Database Technology/23rd International Conference on Database Theory, EDBT-ICDT-WS 2020, CEUR Workshop Proceedings, 2578, 158672.

Sironi, P. (2020). The True Value of AI to Transform Push/Pull Wealth Management Offers. In the AI Book: The Artificial Intelligence Handbook for Investors, Entrepreneurs and FinTech Visionaries, 122-124. doi:10.1002/9781119551966.ch33.

Brüns, J. D., & Meißner, M. (2024). Do you create your content yourself? Using generative artificial intelligence for social media content creation diminishes perceived brand authenticity. Journal of Retailing and Consumer Services, 79, 103790. doi:10.1016/j.jretconser.2024.103790.

Elhajjar, S., Yacoub, L., & Yaacoub, H. (2023). Automation in business research: systematic literature review. Information Systems and e-Business Management, 21(3), 675-698. doi:10.1007/s10257-023-00645-z.

Fernandez, D., Dastane, O., Omar Zaki, H., & Aman, A. (2024). Robotic process automation: bibliometric reflection and future opportunities. European Journal of Innovation Management, 27(2), 692-712. doi:10.1108/EJIM-10-2022-0570.

Pulizzi, J. (2016). Go All-In with Content Marketing or Do Nothing: #CMWorld. Content Marketing Institute, New York, United States. Available online: https://contentmarketinginstitute.com/articles/all-in-content-marketing/ (accessed on May 2024).

Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., & Wang, Y. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International Journal of Information Management, 59, 102168. doi:10.1016/j.ijinfomgt.2020.102168.

Mingotto, E., Montaguti, F., & Tamma, M. (2021). Challenges in re-designing operations and jobs to embody AI and robotics in services. Findings from a case in the hospitality industry. Electronic Markets, 31(3), 493-510. doi:10.1007/s12525-020-00439-y.

Mero, J., Leinonen, M., Makkonen, H., & Karjaluoto, H. (2022). Agile logic for SaaS implementation: Capitalizing on marketing automation software in a start-up. Journal of Business Research, 145, 583-594. doi:10.1016/j.jbusres.2022.03.026.

Yigitcanlar, T., Kankanamge, N., Regona, M., Ruiz Maldonado, A., Rowan, B., Ryu, A., & Li, R. Y. M. (2020). Artificial Intelligence Technologies and Related Urban Planning and Development Concepts: How Are They Perceived and Utilized in Australia? Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 187. doi:10.3390/joitmc6040187.

Graesch, J. P., Hensel-Börner, S., & Henseler, J. (2021). Information technology and marketing: an important partnership for decades. Industrial Management & Data Systems, 121(1), 123-157. doi:10.1108/IMDS-08-2020-0510.

Obreja, D. M., Rughiniș, R., & Rosner, D. (2024). Mapping the conceptual structure of innovation in artificial intelligence research: A bibliometric analysis and systematic literature review. Journal of Innovation & Knowledge, 9(1), 100465. doi:10.1016/j.jik.2024.100465.

Informa Group Company. (2024). Are open access journals good quality? Taylor & Francis, London, United Kingdom. Available online: https://authorservices.taylorandfrancis.com/blog/open-research/are-open-access-journals-good-quality/(accessed on May 2024).

Mazumdar, S., Seybold, D., Kritikos, K., & Verginadis, Y. (2019). A survey on data storage and placement methodologies for Cloud-Big Data ecosystem. Journal of Big Data, 6(1), 15. doi:10.1186/s40537-019-0178-3.

Demchuk, A., Rusyn, B., Pohreliuk, L., Gozhyj, A., Kalinina, I., Chyrun, L., & Antonyuk, N. (2019). Commercial content distribution system based on neural network and machine learning. 1st International Workshop on Information-Communication Technologies and Embedded Systems, ICT and ES 2019, CEUR Workshop Proceedings, 2516, 40-57.

Boukar, M. M., Mahamat, A. A., & Djibrine, O. H. (2024). The Impact of Artificial Intelligence (AI) on Content Management Systems (CMS): A Deep Dive. International Journal of Intelligent Systems and Applications in Engineering, 12(1), 552-560.

Lyu, X., Jia, F., & Zhao, B. (2023). Impact of big data and cloud-driven learning technologies in healthy and smart cities on marketing automation. Soft Computing, 27(7), 4209-4222. doi:10.1007/s00500-022-07031-w.

Pereira, L., Tomás, D., Dias, Á., da Costa, R. L., & Gonçalves, R. (2023). How artificial intelligence can improve digital marketing. International Journal of Business Information Systems, 44(4), 581-624. doi:10.1504/IJBIS.2023.135351.

Martínez-Castaáo, R., Losada, D. E., & Pichel, J. C. (2022). Real-Time Focused Extraction of Social Media Users. IEEE Access, 10, 42607-42622. doi:10.1109/ACCESS.2022.3168977.

Singh, P. (2024). Beyond the basics: Exploring the impact of social media marketing enablers on business success. Heliyon, 10(5), e26435. doi:10.1016/j.heliyon.2024.e26435.

Barbosa, B., Saura, J. R., & Bennett, D. (2024). How do entrepreneurs perform digital marketing across the customer journey? A review and discussion of the main uses. The Journal of Technology Transfer, 49(1), 69-103. doi:10.1007/s10961-022-09978-2.

Ettrich, O., Stahlmann, S., Leopold, H., & Barrot, C. (2024). Automatically identifying customer needs in user-generated content using token classification. Decision Support Systems, 178, 114107. doi:10.1016/j.dss.2023.114107.

Carlson, K., Kopalle, P. K., Riddell, A., Rockmore, D., & Vana, P. (2023). Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis. International Journal of Research in Marketing, 40(1), 54-74. doi:10.1016/j.ijresmar.2022.02.004.

Lipianina-Honcharenko, K., Kit, I., Zahorodnia, D., & Osolinskyi, O. (2023). Optimization Method of Advertising Texts Based on Generative Models. 3rd International Workshop on Information Technologies: Theoretical and Applied Problems, ITTAP 2023, CEUR Workshop Proceedings, 3628, 15-27.

Chiarello, F., Giordano, V., Spada, I., Barandoni, S., & Fantoni, G. (2024). Future applications of generative large language models: A data-driven case study on ChatGPT. Technovation, 133, 103002. doi:10.1016/j.technovation.2024.103002.

Ngaruiya, N., Donner, J., Baru, J. K., & Chege, B. W. (2023). The domestication of AI by Kenyan digital creators. AfriCHI '23: Proceedings of the 4th African Human Computer Interaction Conference, 71-75. doi:10.1145/3628096.3628753.

Hidayati, N. N. (2023). Improving Aspect-Based Sentiment Analysis for Hotel Reviews with Latent Dirichlet Allocation and Machine Learning Algorithms. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 9(2), 144-157. doi:10.26594/register.v9i2.3441.

Medina Aguerrebere, P., Medina, E., & Gonzalez Pacanowski, T. (2024). The Role of Smart Technologies in French Hospitals’ Branding Strategies. Journalism and Media, 5(1), 92-107. doi:10.3390/journalmedia5010007.

Zghurska, O., Vynogradova, O., Yerankin, O., Korchynska, O., Ovsiienko, N., & Aisulu, A. (2024). Media Planning as A Necessary Condition for Increasing the Efficiency of Business Structures’ Digital Marketing Activities. Financial and Credit Activity: Problems of Theory and Practice, 1(54), 578-590. doi:10.55643/fcaptp.1.54.2024.4271.

Giannakopoulos, N. T., Terzi, M. C., Sakas, D. P., Kanellos, N., Toudas, K. S., & Migkos, S. P. (2024). Agroeconomic Indexes and Big Data: Digital Marketing Analytics Implications for Enhanced Decision Making with Artificial Intelligence-Based Modeling. Information (Switzerland), 15(2), 67. doi:10.3390/info15020067.

Swan, E. L., Peltier, J. W., & Dahl, A. J. (2024). Artificial intelligence in healthcare: the value co-creation process and influence of other digital health transformations. Journal of Research in Interactive Marketing, 18(1), 109-126. doi:10.1108/JRIM-09-2022-0293.

Martínez, I. J. M., Terrón, J. M. A., & Cobarro, P. H. S. (2022). Smart Advertising: AI-Driven Innovation and Technological Disruption in the Advertising Ecosystem. Revista Latina de Comunicacion Social, 2022(80), 69-90. doi:10.4185/RLCS-2022-1693.

Restrepo, A. N. R., & Lis-Gutiérrez, J. P. (2023). A review of GPT Chat applications in Marketing. Salud, Ciencia y Tecnologia-Serie de Conferencias, 2, 514. doi:10.56294/sctconf2023514.

Mongeon, P., Siler, K., Archambault, A., Sugimoto, C. R., & Larivière, V. (2021). Collection development in the era of big deals. College & Research Libraries, 82(2), 219–236. doi:10.5860/crl.82.2.219.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-03-019

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Thadathibesra Phuthong, Thadathibesra Phuthong