Techno-Economic Evaluation of Carbon Capture and Storage for Combined Cycle Power Generation
Downloads
Carbon dioxide (CO₂) is a major driver of greenhouse gas emissions, which lead to an increase in Earth's temperature and subsequently drive climate change. CO₂ is primarily produced from fossil fuel-based power generation. Carbon capture and storage (CCS) is a CO₂ capture technology that can be added to fossil fuel power generation. This study evaluates the he technological, financial, and ecological impacts of upgrading CCS technology on a Natural Gas Combined Cycle (NGCC) power generation with three blocks. Amine-based post-combustion capture technology is applied in this study. Simulations were performed employing the Integrated Environment Control Model software. The addition of CCS significantly reduces net power output across all blocks. For Block 1, net power declines from 133 MW to 97.6 MW, a 27% reduction, while Block 2 drops by 17%, from 441.7 MW to 368.1 MW. Block 3 shows a 13% decrease, with net power falling from 441.9 MW to 385.5 MW. Thermal efficiency also declines with the installation of CCS. Corresponding efficiency losses are also notable: Block 1 falls from 40.85% to 30%, Block 2 from 45.24% to 37.69%, and Block 3 from 53.89% to 46.79%. The levelized cost of electricity increases considerably alongside CCS implementation, rising by 80% for Block 1 (0.0843 to 0.1522 USD/kWh), 47% for Block 2 (0.0761 to 0.1114 USD/kWh), and 42% for Block 3 (0.06618 to 0.0874 USD/kWh). Sensitivity analysis indicates that LCOE competitiveness with the national weighted average is achievable when carbon prices exceed 145 USD/t CO₂ for Block 1, 90 USD/t CO₂ for Block 2, and 45 USD/t CO₂ for Block 3. These findings emphasize the trade-offs between power generation efficiency, costs, and carbon capture, providing essential insights for future energy policy and CCS adoption strategies.
Downloads
[1] Lindsey, R. (2024). Climate Change: Atmospheric Carbon Dioxide. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide (accessed on May 2025).
[2] Anderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour, 40(3), 178–187. doi:10.1016/j.endeavour.2016.07.002.
[3] Tiseo, I. (2025). Distribution of carbon dioxide emissions worldwide in 2023, by sector. Statista. Available online: https://www.statista.com/statistics/1129656/global-share-of-co2-emissions-from-fossil-fuel-and-cement/ (accessed on May 2025).
[4] Statista Research Department. (2025). Distribution of electricity generation worldwide in 2023, by energy source. Statista. Available online: https://www.statista.com/statistics/269811/world-electricity-production-by-energy-source/ (accessed on May 2025).
[5] EDGAR. (2023). GHG emissions of all world countries. Emissions Database for Global Atmospheric Research (EDGAR), European Union. Available online: https://edgar.jrc.ec.europa.eu/report_2023?vis=co2tot#emissions_table (accessed on May 2025).
[6] IEA. (2025). Emission: Indonesia. International Energy Agency (IEA), Paris, France. Available online: https://www.iea.org/countries/indonesia/emissions (accessed on May 2025).
[7] Ritchie, H., Rosado, P., and Roser, M. (2023) CO₂ and Greenhouse Gas Emissions. Our World in Data. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on May 2025).
[8] Our World in Data (2025). Electricity production by source, Indonesia. Our World in Data. Available online: https://ourworldindata.org/grapher/electricity-prod-source-stacked?country=~IDN (accessed on May 2025).
[9] PLN (2024). Statistik PLN 2023. Available online: https://web.pln.co.id/statics/uploads/2024/03/Statistik-PLN-2023-Unaudited-28.2.24.pdf (accessed on May 2025).
[10] Puga, J. N. (2010). The importance of combined cycle generating plants in integrating large levels of wind power generation. The Electricity Journal, 23(7), 33-44. doi:10.1016/j.tej.2010.07.002 35.
[11] IMIA. (2015). Combined Cycle Power Plants. IMIA Annual Conference 2015, Merida (Yucatán), Mexico. Available online: https://www.imia.com/wp-content/uploads/2023/09/IMIA-WGP-09115-CCPP-Combined-Cycle-Power-Plants.c.pdf (accessed on May 2025).
[12] Arrieta, F. R. P., & Lora, E. E. S. (2005). Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3), 261–272. doi:10.1016/j.apenergy.2004.04.007.
[13] Şen, G., Nil, M., Mamur, H., Doğan, H., Karamolla, M., Karaçor, M., Kuyucuoğlu, F., Yörükeren, N., & Bhuiyan, M. R. A. (2018). The effect of ambient temperature on electric power generation in natural gas combined cycle power plant—A case study. Energy Reports, 4, 682–690. doi:10.1016/j.egyr.2018.10.009.
[14] Ahmad, A. H., Darmanto, P. S., & Juangsa, F. B. (2023). Thermodynamic Study on Decarbonization of Combined Cycle Power Plant. Journal of Engineering and Technological Sciences, 55(5), 613–626. doi:10.5614/j.eng.technol.sci.2023.55.5.10.
[15] Esquivel-Patiño, G. G., & Nápoles-Rivera, F. (2021). Environmental and energetic analysis of coupling a biogas combined cycle power plant with carbon capture, organic Rankine cycles and CO2 utilization processes. Journal of Environmental Management, 300(September). doi:10.1016/j.jenvman.2021.113746.
[16] Omehia, K. C., Clements, A. G., Michailos, S., Hughes, K. J., Ingham, D. B., & Pourkashanian, M. (2020). Techno-economic assessment on the fuel flexibility of a commercial scale combined cycle gas turbine integrated with a CO2 capture plant. International Journal of Energy Research, 44(11), 9127–9140. doi:10.1002/er.5681.
[17] Asian Development Bank (2019). Carbon Dioxide-Enhanced Oil Recovery in Indonesia 2019. doi:10.22617/TCS190600.
[18] The Republic of Indonesia (2022). Progress of CCCS/CCUS Implementation in Indonesia. The Ministry of Energyand Mineral Resources, Indonesia. Available online: https://acnf.jp/program/file/presentation/7_Panelist_MEMR-IDN.pdf (accessed on May 2025).
[19] PLN (2023). Consolidated ESG Performance Report 2022. Available online: https://web.pln.co.id/statics/uploads/2023/10/ESG-Performance-Report-2022.pdf (accessed on May 2025).
[20] The World Bank. (2015). Carbon Capture Storage (CCS) for Coal-Fired Power Plants in Indonesia. Available online: https://documents1.worldbank.org/curated/en/563781468284373788/pdf/FINAL-OK2-Jun-2415Cov-reduced-with-WB-cover.pdf (accessed on May 2025).
[21] Susantoro, T. M., Sugihardjo, Wikantika, K., Sunarjanto, D., Pasarai, U., Widarsono, B., Rahmadi, A., Romli, M., Wahyudi, P., & Kepies, S. (2023). CCUS-EOR Optimization to Achieve Zero Emission Program Targets in Northwest Java Basin. Evergreen, 10(3), 1809–1818. doi:10.5109/7151730.
[22] Rahmanta, M. A., Aprilana, A., Ruly, Cahyo, N., Hapsari, T. W. D., & Supriyanto, E. (2024). Techno-Economic and Environmental Impact of Biomass Co-Firing with Carbon Capture and Storage in Indonesian Power Plants. Sustainability (Switzerland), 16(8), 3423. doi:10.3390/su16083423.
[23] Global CCS Institute. (2023). Global Status of CCS 2023, Scaling Up Through 2030. Available online: https://www.globalccsinstitute.com/wp-content/uploads/2024/01/Global-Status-of-CCS-Report-1.pdf (accessed on May 2025).
[24] Giannaris, S., Janowczyk, D., Ruffini, J., Hill, K., Jacobs, B., Bruce, C., ... & Srisang, W. (2021). SaskPower’s Boundary Dam Unit 3 Carbon Capture Facility-The Journey to Achieving Reliability. Proceedings of the 15th Greenhouse Gas Control Technologies Conference, 15-18.
[25] Mantripragada, H. C., Zhai, H., & Rubin, E. S. (2019). Boundary Dam or Petra Nova – Which is a better model for CCS energy supply? International Journal of Greenhouse Gas Control, 82, 59–68. doi:10.1016/j.ijggc.2019.01.004.
[26] European Comission. (2017). Technology Readiness Levels Introduction. Horiz, 19(2017), 7124. Available online: https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-wp1820-annex-g-trl_en.pdf (accessed on May 2025).
[27] Hong, W. Y. (2022). A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Science and Technology, 3(March), 100044. doi:10.1016/j.ccst.2022.100044.
[28] Dziejarski, B., Krzyżyńska, R., & Andersson, K. (2023). Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel, 342. doi:10.1016/j.fuel.2023.127776.
[29] Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., … Mac Dowell, N. (2018). Carbon capture and storage (CCS): The way forward. Energy and Environmental Science, 11(5), 1062–1176. doi:10.1039/c7ee02342a.
[30] Rubin, E. S., Davison, J. E., & Herzog, H. J. (2015). The cost of CO2 capture and storage. International Journal of Greenhouse Gas Control, 40, 378–400. doi:10.1016/j.ijggc.2015.05.018.
[31] Seif El Nasr, A., Nelson, T., Kataria, A., & Abu-Zahra, M. R. M. (2015). Benchmarking of a novel solid sorbent CO2 capture process for NGCC power generation. International Journal of Greenhouse Gas Control, 42, 583–592. doi:10.1016/j.ijggc.2015.09.014.
[32] Ahn, J. H., Jeong, J. H., Choi, B. S., & Kim, T. S. (2019). Influence of various carbon capture technologies on the performance of natural gas-fired combined cycle power plants. Journal of Mechanical Science and Technology 33(3), 1431–1440. doi:10.1007/s12206-019-0245-x.
[33] Ugwuishiwu, B. O., Nwakaire, J. N., & Ohagwu, C. J. (2019). Cost analysis of carbon capture and storage for current gas-fired power plants in Nigeria. Greenhouse Gases: Science and Technology, 9(2), 370–386. doi:10.1002/ghg.1855.
[34] Sipöcz, N., & Tobiesen, F. A. (2012). Natural gas combined cycle power plants with CO2 capture - Opportunities to reduce cost. International Journal of Greenhouse Gas Control, 7, 98–106. doi:10.1016/j.ijggc.2012.01.003.
[35] Rubin, E. S., & Zhai, H. (2012). The cost of carbon capture and storage for natural gas combined cycle power plants. Environmental Science and Technology, 46(6), 3076–3084. doi:10.1021/es204514f.
[36] González-Díaz, A., Alcaráz-Calderón, A. M., González-Díaz, M. O., Méndez-Aranda, Á., Lucquiaud, M., & González-Santaló, J. M. (2017). Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO2 capture. Energy, 134, 221–233. doi:10.1016/j.energy.2017.05.020.
[37] Singh, B., Strømman, A. H., & Hertwich, E. (2011). Life cycle assessment of natural gas combined cycle power plant with post-combustion carbon capture, transport and storage. International Journal of Greenhouse Gas Control, 5(3), 457–466. doi:10.1016/j.ijggc.2010.03.006.
[38] PT Indonesia Power (2023). Laporan Statistik 2022. Available online: https://www.plnindonesiapower.co.id/id/komunikasi-berkelanjutan/Reports/STATISTIC REPORT PT PLN INDONESIA POWER TAHUN 2022.pdf (accessed on May 2025).
[39] ESRI. (2024). Oil and Gas Features – Indonesia. GIS Software for Mapping and Spatial Analytics. Available online: https://www.arcgis.com/apps/mapviewer/index.html?webmap=e27dedd8e9df46a89ca0e9e7cc3e201b (accessed on May 2025).
[40] DITPPU (2019). Ministry of Environment and Forestry of the Republic of Indonesia, Regulation of the Minister of Environment and Forestry of the Republic of Indonesia Number P.15/MENLHK/SETJEN/KUM.1/4/2019. Available online: https://ditppu.menlhk.go.id/portal/uploads/laporan/1593657762_PERMENLHK NO 15 TH 2019 ttg BM Emisi Pembangkit Listrik Thermal.pdf (accessed on May 2025).
[41] Kelly, M., Main, J., Jackman, D., & Lundeen, J. (2019). Indonesia: Pilot Carbon Capture and Storage Activity in the Natural Gas Processing Sector. Asian Development Bank, Mandaluyong City, Philippines.
[42] IECM. (2024). Integrated Environmental Control Model (IECM) Version 11.5 (Carnegie Mellon University). Available online: https://www.cmu.edu/epp/iecm/index.html (accessed on May 2025).
[43] IECM. (2024). Carnegie Mellon University, and NETL. IECM Technical Documentation : Amine-based Post Combustion CO2 Capture. Available online: https://www.uwyo.edu/iecm/_bfiles/documentation/201901_iecmtd_amine-based-co2-cap.pdf (accessed on May 2025).
[44] IECM. (2009). Carnegie Mellon University. IECM Technical Documentation Updates Final Report. Available online: https://www.cmu.edu/epp/iecm/rubin/PDF files/2009/IECM Technical Documentation Nov2009-1.pdf.pdf (accessed on May 2025).
[45] IECM. (2009). Carnegie Mellon University, and NETL. IECM technical documentation: Financial parameters. Available online: http://www.cmu.edu/epp/iecm/IECM_Publications/2009b IECM User Manual.pdf (accessed on May 2025).
[46] Zhai, H., Mantripragada, H. C., & Rubin, E. S. (2018). A Technical and Economic Assessment of Advanced Carbon Capture Technologies. GHGT 2018 - 14th International Conference on Greenhouse Gas Control Technologies, 1-7.
[47] Wu, N., Parsons, J. E., & Polenske, K. R. (2013). The impact of future carbon prices on CCS investment for power generation in China. Energy Policy, 54, 160–172. doi:10.1016/j.enpol.2012.11.011.
[48] Hu, B., & Zhai, H. (2017). The cost of carbon capture and storage for coal-fired power plants in China. International Journal of Greenhouse Gas Control, 65(September), 23–31. doi:10.1016/j.ijggc.2017.08.009.
[49] I.E.A. (2020). Projected Costs of Generating Electricity 2020. Available online: https://www.iea.org/reports/projected-costs-of-generating-electricity-2020 (accessed on May 2025).
[50] Trading Economics. (2023). Indonesia interest rate. Available online: https://tradingeconomics.com/indonesia/interest-rate (accessed on May 2025).
[51] Bank of Indonesia. (2023). BI 7-day (Reverse) Repo Rate. Available online: https://www.bi.go.id/en/statistik/indikator/bi-7day-rr.aspx (accessed on May 2025).
[52] ESDM. (2021). Ministry of Energy and Mineral Resources of the Republic of Indonesia, Decree of the Minister of Energy and Mineral Resources of the Republic of Indonesia No. 169.K/HK.02/MEM.M/2021. Available online: https://jdih.esdm.go.id/storage/document/Kepmen No. 169.K.HK.02.MEM.M.2021.pdf (accessed on May 2025).
[53] PwC. (2023). Indonesian Pocket Tax Book. PwC, Jakarta, Indonesia. Available online: https://www.pwc.com/id/en/pocket-tax-book/english/pocket-tax-book-2023.pdf (accessed on May 2025).
[54] Governor of East Java, Republic of Indonesia, Decree of the Governor of East Java No. 188/889/KPTS/013/2022. Available online: https://dokumjdih.jatimprov.go.id/upload/45813/2022KGJATIM0035889.pdf (accessed on May 2025).
[55] Intratec Solutions LLC (2024). Ammonia Price, Current, and Forecast. Available online: https://www.intratec.us/chemical-markets/ammonia-price (accessed on May 2025).
[56] Intratec Solutions LLC (2024). Monoethanolamine Price, Current and Historical. Available online: https://www.intratec.us/chemical-markets/monoethanolamine-price (accessed on May 2025).
[57] Smith, E., Morris, J., Kheshgi, H., Teletzke, G., Herzog, H., & Paltsev, S. (2021). The cost of CO2 transport and storage in global integrated assessment modeling. 15th Greenhouse Gas Control Technologies Conference 2021, GHGT 2021, 109, 103367. doi:10.1016/j.ijggc.2021.103367.
[58] Weather & Climate. (2024). Weather and Climate: Pasuruan, East Java, Indonesia Climate. World Weather & Climate Information.
[59] Rubin, E. S., Chen, C., & Rao, A. B. (2007). Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy, 35(9), 4444–4454. doi:10.1016/j.enpol.2007.03.009.
[60] Vasudevan, S., Farooq, S., Karimi, I. A., Saeys, M., Quah, M. C. G., & Agrawal, R. (2016). Energy penalty estimates for CO2 capture: Comparison between fuel types and capture-combustion modes. Energy, 103, 709–714. doi:10.1016/j.energy.2016.02.154.
[61] Bao, J., Zhang, L., Song, C., Zhang, N., Guo, M., & Zhang, X. (2019). Reduction of efficiency penalty for a natural gas combined cycle power plant with post-combustion CO2 capture: Integration of liquid natural gas cold energy. Energy Conversion and Management, 198(June), 111852. doi:10.1016/j.enconman.2019.111852.
[62] Sultan, H., Muhammad, H. A., Bhatti, U. H., Min, G. H., Baek, I. H., Baik, Y. J., & Nam, S. C. (2021). Reducing the efficiency penalty of carbon dioxide capture and compression process in a natural gas combined cycle power plant by process modification and liquefied natural gas cold energy integration. Energy Conversion and Management, 244(March), 114495. doi:10.1016/j.enconman.2021.114495.
[63] Abdollahian, A., & Ameri, M. (2021). Effect of supplementary firing on the performance of a combined cycle power plant (C. Soc, Trans.). Applied Thermal Engineering, 193(4), 117049. doi:10.1016/j.applthermaleng.2021.117049.
[64] Mohd Saif, E., & Tariq, M. (2017). Performance analysis of gas turbine at varying ambient temperature. International Journal of Mechanical Engineering and Technology, 8(1), 240–280.
[65] De Sa, A., & Al Zubaidy, S. (2011). Gas turbine performance at varying ambient temperature. Applied Thermal Engineering, 31(14–15), 2735–2739. doi:10.1016/j.applthermaleng.2011.04.045.
[66] Rubin, E. S. (2012). Understanding the pitfalls of CCS cost estimates. International Journal of Greenhouse Gas Control, 10, 181–190. doi:10.1016/j.ijggc.2012.06.004.
[67] PT. PLN (2022), PLN Statistics. 2022. Available online: https://web.pln.co.id/statics/uploads/2023/10/Statistik-PLN-2022-ENG-20.6.pdf (accessed on May 2025).
[68] Nwaoha, C., Supap, T., Idem, R., Saiwan, C., Tontiwachwuthikul, P., AL-Marri, M. J., & Benamor, A. (2017). Advancement and new perspectives of using formulated reactive amine blends for post-combustion carbon dioxide (CO2) capture technologies. Petroleum, 3(1), 10–36. doi:10.1016/j.petlm.2016.11.002.
[69] Cheng, C. hung, Li, K., Yu, H., Jiang, K., Chen, J., & Feron, P. (2018). Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions. Applied Energy, 211, 1030–1038. doi:10.1016/j.apenergy.2017.11.105.
[70] Helei, L., Tantikhajorngosol, P., Chan, C., & Tontiwachwuthikul, P. (2021). Technology development and applications of artificial intelligence for post-combustion carbon dioxide capture: Critical literature review and perspectives. International Journal of Greenhouse Gas Control, 108, 103307. doi:10.1016/j.ijggc.2021.103307.
[71] Global CCS Institute (2021). Technology Readiness and Costs of CCS. Available online: https://www.globalccsinstitute.com/wp-content/uploads/2021/03/Technology-Readiness-and-Costs-for-CCS-2021-1.pdf (accessed on May 2025).
[72] Al-Qayim, K., Nimmo, W., & Pourkashanian, M. (2015). Comparative techno-economic assessment of biomass and coal with CCS technologies in a pulverized combustion power plant in the United Kingdom. International Journal of Greenhouse Gas Control, 43, 82–92. doi:10.1016/j.ijggc.2015.10.013.
[73] Li, K., Leigh, W., Feron, P., Yu, H., & Tade, M. (2016). Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements. Applied Energy, 165, 648–659. doi:10.1016/j.apenergy.2015.12.109.
[74] Aldersey-Williams, J., & Rubert, T. (2019). Levelised cost of energy – A theoretical justification and critical assessment. Energy Policy, 124, 169–179. doi:10.1016/j.enpol.2018.10.004.
[75] GOV.UK (2016). Energy and Industrial Strategy HM Government Department for Business. Electricity Generation Costs 2016. Available online: https://www.gov.uk/government/publications/beis-electricity-generation-costs-november-2016 gov.uk (accessed on May 2025).
[76] Kansai, E. P. (2022). Outline of Thermal Power Generation. Outline of Thermal Power Generation, 05. Available online: https://www.kepco.co.jp/english/energy/fuel/thermal_power/shikumi/index.html (accessed on May 2025).
[77] Lund, P. D., Lindgren, J., Mikkola, J., & Salpakari, J. (2015). Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews, 45, 785–807. doi:10.1016/j.rser.2015.01.057.
[78] Van Den Broek, M., Berghout, N., & Rubin, E. S. (2015). The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints. Renewable and Sustainable Energy Reviews, 49, 1296–1322. doi:10.1016/j.rser.2015.04.089.
[79] Zhang, Q., Mclellan, B. C., Tezuka, T., & Ishihara, K. N. (2013). An integrated model for long-term power generation planning toward future smart electricity systems. Applied Energy, 112, 1424-1437. doi:10.1016/j.apenergy.2013.03.073.
[80] PT Pembangkitan Jawa Bali. (2022). PT. Pembangkitan Jawa Bali Statistik Perusahaan 2017-2021. Available online: https://www.plnnusantarapower.co.id/wp-content/uploads/2022/07/Statistik-2017-2021-PJB.pdf (accessed on May 2025).
[81] The World Bank. (2022). State and trends of carbon pricing 2022. The World Bank, Washington, D.C., United States. doi:10.1596/978-1-4648-1895-0.
[82] Boyce, J. K. (2018). Carbon Pricing: Effectiveness and Equity. Ecological Economics, 150(March), 52–61. doi:10.1016/j.ecolecon.2018.03.030.
[83] World Bank. (2024). Number of carbon pricing mechanisms in operation worldwide from 1990 to 2024, by type. Available online: https://www-statista-com.ezproxy.ugm.ac.id/statistics/483565/planned-and-implemented-carbon-pricing-instruments-worldwide/ (accessed on May 2025).
[84] World Bank. (2024). Carbon Tax Rates in Selected Jurisdictions Worldwide as of April 2024. Available online: https://www.statista.com/statistics/483590/prices-of-implemented-carbon-pricing-instruments-worldwide-by-select-country/ (accessed on May 2025).
[85] Edwin, W., & Josephine, van Z. (2023). European Union Emissions Trading System (EU ETS). Oxford Encyclopedia of EU Law, 168. doi:10.1093/law-oeeul/e168.013.168.
[86] President of Republic Indonesia. (2021). Presidential Regulation of the Republic of Indonesia Number 98 of 2021, 064979. Available online: https://peraturan.bpk.go.id/Details/187122/perpres-no-98-tahun-2021 (accessed on May 2025).
[87] Republik Indonesia. (2021). Law of the Republic of Indonesia No. 7 of 2021 concerning the Harmonization of Tax Regulations. Republic of Indonesia, 1-224.
[88] PwC. (2022). Guidance on the carbon tax under the Harmonisation of Tax Regulations Law Financial reporting considerations. Available online: www.pwc.com/id (accessed on May 2025).
[89] Wulandari, A., & Salsabiila, A. (2025). Toward a Sustainable Carbon Trading System in Indonesia: A Systematic Literature Review of Global Challenges and Best Practices. Sustainability and Climate Change, 18(3), 168-180. doi:10.1089/scc.2024.0136.
[90] Siregar, Y. I. (2024). Pathways towards net-zero emissions in Indonesia's energy sector. Energy, 308, 133014. doi:10.1016/j.energy.2024.133014.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
