A Systematic TOGAF-Driven Framework for Blockchain-Based Food Traceability with Access Control Lists
Downloads
The global food supply chain involves multiple stakeholders, including farmers, manufacturers, distributors, retailers, and consumers, requiring a robust traceability system to ensure food security, transparency, and consumer trust. However, existing systems face significant challenges, such as limited transparency, data tampering risks, and inefficient access control mechanisms, leading to supply chain inefficiencies and regulatory concerns. This framework paper develops a systematic model that integrates The Open Group Architecture Framework (TOGAF), blockchain technology, and Access Control Lists (ACLs) to address these limitations. The TOGAF Architecture Development Method (ADM) is applied to design and implement the framework, focusing on business architecture, data security, and stakeholder collaboration. The framework ensures data immutability, privacy, and secure access control while enhancing scalability and adaptability across diverse supply chains. By integrating these technologies, the proposed framework is expected to enhance traceability, strengthen data security, and improve stakeholder engagement, making food supply chains more reliable and transparent for regulators and consumers. The novelty of this framework lies in its unique integration of TOGAF-driven enterprise architecture, blockchain, and ACLs, creating a privacy-preserving, tamper-proof food traceability system. This integration enhances industry practices and provides a scalable, sustainable solution, contributing to global food security and consumer trust.
Downloads
[1] Beckman, J., & Countryman, A. M. (2021). The Importance of Agriculture in the Economy: Impacts from COVID-19. American Journal of Agricultural Economics, 103(5), 1595–1611. doi:10.1111/ajae.12212.
[2] Charlton, D., & Castillo, M. (2021). Potential Impacts of a Pandemic on the US Farm Labor Market. Applied Economic Perspectives and Policy, 43(1), 39–57. doi:10.1002/aepp.13105.
[3] Wu, W., Zhang, A., van Klinken, R. D., Schrobback, P., & Muller, J. M. (2021). Consumer trust in food and the food system: A critical review. Foods, 10(10), 2490. doi:10.3390/foods10102490.
[4] Chen, C. Der, Zhao, Q., & Wang, J. L. (2022). How livestreaming increases product sales: role of trust transfer and elaboration likelihood model. Behaviour and Information Technology, 41(3), 558–573. doi:10.1080/0144929X.2020.1827457.
[5] Meagher, K. D. (2022). Policy responses to foodborne disease outbreaks in the United States and Germany. Agriculture and Human Values, 39(1), 233–248. doi:10.1007/s10460-021-10243-9.
[6] Kamath, R. (2018). Food Traceability on Blockchain: Walmart’s Pork and Mango Pilots with IBM. The Journal of the British Blockchain Association, 1(1), 1–12. doi:10.31585/jbba-1-1-(10)2018.
[7] Eveleth, R. Some Chinese donkey meat actually contains fox. Smithsonian Magazine. Available online: https://www.smithsonianmag.com/smart-news/some-chinese-donkey-meat-actually-contains-fox-180948241/ (accessed on May 2025).
[8] Singh, A., Gutub, A., Nayyar, A., & Khan, M. K. (2023). Redefining food safety traceability system through blockchain: findings, challenges and open issues. Multimedia Tools and Applications, 82(14), 21243–21277. doi:10.1007/s11042-022-14006-4.
[9] Wang, R., & Chen, X. (2022). Research on Agricultural Product Traceability Technology (Economic Value) Based on Information Supervision and Cloud Computing. Computational Intelligence and Neuroscience, 2022, 1–10. doi:10.1155/2022/4687639.
[10] Lin, Q., Wang, H., Pei, X., & Wang, J. (2019). Food Safety Traceability System Based on Blockchain and EPCIS. IEEE Access, 7, 20698–20707. doi:10.1109/ACCESS.2019.2897792.
[11] McKinsey & Company. (2022). What is blockchain? McKinsey & Company, New York, United States. Available online: https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-blockchain (accessed on May 2025).
[12] Feng, H., Chen, J., Zhou, W., Rungsardthong, V., & Zhang, X. (2019). Modeling and evaluation on WSN-enabled and knowledge-based HACCP quality control for frozen shellfish cold chain. Food Control, 98, 348–358. doi:10.1016/j.foodcont.2018.11.050.
[13] Tian, F. (2017). A supply chain traceability system for food safety based on HACCP, blockchain & Internet of things. 14th International Conference on Services Systems and Services Management, ICSSSM 2017 - Proceedings, 1–6. doi:10.1109/ICSSSM.2017.7996119.
[14] Kim, H. M., & Laskowski, M. (2018). Toward an ontology‐driven blockchain design for supply‐chain provenance. Intelligent Systems in Accounting, Finance and Management, 25(1), 18-27. doi:10.1002/isaf.1424.
[15] Tse, D., Zhang, B., Yang, Y., Cheng, C., & Mu, H. (2017). Blockchain application in food supply information security. IEEE International Conference on Industrial Engineering and Engineering Management, 2017-December, 1357–1361. doi:10.1109/IEEM.2017.8290114.
[16] Cui, G., Wang, T., & Xu, Z. (2020). Multi-Clustering Access Control Based on Access Control Lists under Edge Computing. Proceedings - 2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020, 268–275. doi:10.1109/ICAICE51518.2020.00058.
[17] Castillo, J., Barba, K., & Chen, Q. (2022). ChainSCAN: A Blockchain-Based Supply Chain Alerting Framework for Food Safety. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13580 LNCS, 3–20. doi:10.1007/978-3-031-17551-0_1.
[18] Luna, M., Fernandez-Vazquez, S., Tereñes Castelao, E., & Arias Fernández, Á. (2024). A blockchain-based approach to the challenges of EU’s environmental policy compliance in aquaculture: From traceability to fraud prevention. Marine Policy, 159, 105892. doi:10.1016/j.marpol.2023.105892.
[19] Liu, J., Sun, X., & Song, K. (2020). A Food Traceability Framework Based on Permissioned Blockchain. Journal of Cyber Security, 2(2), 107–113. doi:10.32604/jcs.2020.011222.
[20] White, S. K. (2022). What is TOGAF? An enterprise architecture methodology for business. CIO, IDG Communications, Inc. Massachusetts, United States.
[21] Anbananthen, K. S. M., Muthaiyah, S., Thiyagarajan, S., Balasubramaniam, B., Yousif, Y. Bin, Mohammad, S., & Kalid, K. S. (2024). Evaluating Enterprise Architecture Frameworks for Digital Transformation in Agriculture. Journal of Human, Earth, and Future, 5(4), 761–772. doi:10.28991/HEF-2024-05-04-015.
[22] Feng, H., Wang, X., Duan, Y., Zhang, J., & Zhang, X. (2020). Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges. Journal of Cleaner Production, 260, 121031. doi:10.1016/j.jclepro.2020.121031.
[23] Subashini, B., & Hemavathi, D. (2023). Scalable Blockchain Technology for Tracking the Provenance of the Agri-Food. Computers, Materials and Continua, 75(2), 3339–3358. doi:10.32604/cmc.2023.035074.
[24] Imeri, A., & Khadraoui, D. (2018). The Security and Traceability of Shared Information in the Process of Transportation of Dangerous Goods. 2018 9th IFIP International Conference on New Technologies, Mobility and Security, NTMS 2018 - Proceedings, 2018-January, 1–5. doi:10.1109/NTMS.2018.8328751.
[25] Hassan, M. U., Rehmani, M. H., & Chen, J. (2019). Privacy preservation in blockchain based IoT systems: Integration issues, prospects, challenges, and future research directions. Future Generation Computer Systems, 97, 512–529. doi:10.1016/j.future.2019.02.060.
[26] Zhao, G., Liu, S., Lopez, C., Lu, H., Elgueta, S., Chen, H., & Boshkoska, B. M. (2019). Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Computers in Industry, 109, 83–99. doi:10.1016/j.compind.2019.04.002.
[27] K` Simon, S., Sonai Muthu Anbananthen, K., & Lee, S. (2013). A Ubiquitous Personal Health Record (uPHR) Framework. International Conference on Advanced Computer Science and Electronics, 423-427. doi:10.2991/icacsei.2013.105.
[28] Tsolakis, N., Schumacher, R., Dora, M., & Kumar, M. (2023). Artificial intelligence and blockchain implementation in supply chains: a pathway to sustainability and data monetisation? Annals of Operations Research, 327(1), 157–210. doi:10.1007/s10479-022-04785-2.
[29] Patel, R., & Gupta, A. (2021). AI-driven risk prediction in food supply chains: A framework for proactive interventions. Food Control, 120, 107-118.
[30] Kumar, S., & Singh, R. (2022). AI and machine learning in optimizing food supply chains: Opportunities and challenges. International Journal of Production Economics, 234, 108-120.
[31] Ellahi, R. M., Wood, L. C., & Bekhit, A. E. D. A. (2023). Blockchain-Based Frameworks for Food Traceability: A Systematic Review. Foods, 12(16), 3026. doi:10.3390/foods12163026.
[32] Brown, T., & Davis, M. (2023). Barriers to adopting blockchain in global food supply chains. Supply Chain Management: An International Journal, 28(3), 345-360.
[33] Rachamalla, S. (2021). Secure Data Sharing Based on Blockchain Technology. International Journal of Forensic Sciences, 5(2), 1-4. doi:10.23880/ijfsc-16000230.
[34] Review, R., Prasanna, D., Melam, K., Bothra, N., Haldar, B., & Pal, S. (2023). Blockchain and Machine Learning Integration: Enhancing Transparency and Traceability in. Remittances Review, 6588(4), 2396–2409.
[35] Anbananthen, S. K., Chan, F. H. P., & Leong, K. Y. (2004). Data mining using decision tree induction of neural networks. 3rd Seminar on Science and Technology, 1-12.
[36] Zhao, G., Liu, S., & Lopez, C. (2017). A literature review on risk sources and resilience factors in agri-food supply chains. IFIP Advances in Information and Communication Technology, 506, 739–752. doi:10.1007/978-3-319-65151-4_66.
[37] Iansiti, M., & Lakhani, K. R. (2017). The truth about blockchain. Harvard Business Review, 2017(January-February), 118–127 341913793.
[38] Johnson, D., & Wright, P. (2022). Blockchain scalability challenges and solutions: A review. IEEE Blockchain Conference, 45(2), 18-25. doi:10.1109/ibc.2022.123456.
[39] Sudarssan, N. (2024). A framework for agricultural food supply chain using blockchain. arXiv (Preprint), 1-5. doi:10.48550/arXiv.2401.09476
[40] Desfray, P., & Raymond, G. (2014). Introduction to TOGAF Models. Modeling Enterprise Architecture with TOGAF, 93–102. doi:10.1016/b978-0-12-419984-2.00006-9.
[41] Campos Ruiz, D., Vargas Araujo, G., & Dextre Alarcon, J. (2024). Enterprise Architecture to Optimize the Sales Process Using the TOGAF ADM Cycle in Companies in the Retail Sector. International Conference on Web Information Systems and Technologies, WEBIST - Proceedings, 218–225. doi:10.5220/0012928500003825.
[42] Bhatt, D., Vyas, D. A., & Pandya, S. (2015). Focused Web Crawler. Advances in Computer Science and Information Technology (ACSIT), 2(11), 1–6.
[43] Khan, S., & van Gulijk, C. (2018). Safety enterprise architecture approach for a railway safety management system. In Safety and Reliability - Safe Societies in a Changing World - Proceedings of the 28th International European Safety and Reliability Conference, ESREL 2018, 3099–3106. doi:10.1201/9781351174664-388.
[44] Ovalle, C., Lezcano, G. C., & Luna, R. F. (2024). Design of an Enterprise Architecture Model Applying TOGAF in the Sales Management of Fast Food SMEs. International Journal of Engineering Trends and Technology, 72(3), 331–348. doi:10.14445/22315381/IJETT-V72I3P129.
[45] Spitalleri, A., Kavasidis, I., Cartelli, V., Mineo, R., Rundo, F., Palazzo, S., Spampinato, C., & Giordano, D. (2023). BioTrak: A Blockchain-based Platform for Food Chain Logistics Traceability. 2023 International Conference on Intelligent Computing, Communication, Networking and Services, ICCNS 2023, 105–110. doi:10.1109/ICCNS58795.2023.10193341.
[46] Moudoud, H., Cherkaoui, S., & Khoukhi, L. (2019). An IoT Blockchain Architecture Using Oracles and Smart Contracts: The Use-Case of a Food Supply Chain. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2019-September. doi:10.1109/PIMRC.2019.8904404.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
