PRO-BiGRU: Performance Evaluation Index System for Hardware and Software Resource Sharing Based on Cloud Computing
Downloads
This study aims to address the performance evaluation challenges of computer hardware and software resource sharing in cloud computing environments. To achieve this, we propose an enhanced performance evaluation method by integrating the Poor-Rich Optimization (PRO) algorithm with the Bidirectional Gated Recurrent Unit (BiGRU) network. We first construct a comprehensive multi-dimensional performance evaluation index system that encompasses resource utilization, response time, throughput, and scalability. Subsequently, the PRO algorithm is employed to optimize the hyper-parameter design of the BiGRU network, thereby enhancing the model's learning ability and evaluation accuracy. Performance data is collected using system monitoring tools, and experiments are conducted to validate the model's effectiveness. The results demonstrate that the PRO-BiGRU model achieves an average evaluation accuracy of over 97% across four independent experiments, significantly outperforming traditional algorithms such as CNN, RNN, LSTM, and GRU. The proposed model not only improves the accuracy of performance evaluation but also provides a reliable basis for resource optimization and decision-making in cloud service platforms. The novelty of this research lies in the combination of the PRO algorithm with the BiGRU network, which effectively captures complex data features and enhances the model's reliability and robustness in performance assessment tasks.
Downloads
[1] Kumar, H., Kumar, R., Dutta, S., & Singh, M. (2023). Google’s Cloud Computing Platform-Based Performance Assessment of Machine Learning Algorithms for Precisely Maize Crop Mapping Using Integrated Satellite Data of Sentinel-2A/B and Planetscope. Journal of the Indian Society of Remote Sensing 51)12(, 2599–2613. doi:10.1007/s12524-023-01764-3.
[2] Kumar, H., Kumar, R., Dutta, S., Singh, M., & Karwariya, S. K. (2023). Utilizing machine learning algorithm, cloud computing platform and remote sensing satellite data for impact assessment of flood on agriculture land. Current Science, 125(8), 886–895. doi:10.18520/cs/v125/i8/886-895.
[3] Li, J., & Liu, Z. B. (2023). Sensor-based cloud computing data system and long-distance running fatigue assessment. Preventive Medicine, 173, 107604. doi:10.1016/j.ypmed.2023.107604.
[4] Nezhad, A. S., Doroudi, F., & Kamyab, R. (2024). Assessment of the status and factors influencing the adoption of cloud computing in knowledge-based companies Case Study: Kerman Science and Technology Park. International Journal of Information Science and Management, 22(1), 17–29. doi:10.22034/ijism.2023.1977670.0.
[5] Elnagar, N. G., Elkabbany, G. F., Al-Awamry, A. A., & Abdelhalim, M. B. (2022). Simulation and performance assessment of a modified throttled load balancing algorithm in cloud computing environment. International Journal of Electrical and Computer Engineering, 12(2), 2087–2096. doi:10.11591/ijece.v12i2.pp2087-2096.
[6] Wang, Z., Liu, Y., & Huang, J. (2024). An Open API Architecture to Discover the Trustworthy Explanation of Cloud AI Services. IEEE Transactions on Cloud Computing, 12)2(, 762–776. doi:10.1109/TCC.2024.3398609.
[7] Eid, A. I. A., Miled, A. Ben, Fatnassi, A., Nawaz, M. A., Mahmoud, A. F. A., Abdalla, F. A., Jabnoun, C., Dhibi, A., Allan, F. M., Elhossiny, M. A., Belhaj, S., & Mohamed, I. Ben. (2024). Sports Prediction Model through Cloud Computing and Big Data Based on Artificial Intelligence Method. Journal of Intelligent Learning Systems and Applications, 16)02(, 53–79. doi:10.4236/jilsa.2024.162005.
[8] Baresi, L., Dolci, T., Quattrocchi, G., & Rasi, N. (2023). A multi-faceted analysis of the performance variability of virtual machines. Software - Practice and Experience, 53(11), 2067–2091. doi:10.1002/spe.3244.
[9] Aqasizade, H., Ataie, E., & Bastam, M. (2025). Experimental assessment of containers running on top of virtual machines. IET Networks, 14(1), e12138. doi:10.1049/ntw2.12138.
[10] Ayma Quirita, V. A., da Costa, G. A. O. P., & Beltrán, C. (2022). A Distributed N-FINDR Cloud Computing-Based Solution for Endmembers Extraction on Large-Scale Hyperspectral Remote Sensing Data. Remote Sensing, 14(9), 2153. doi:10.3390/rs14092153.
[11] Khoruzhy, L. I., Petrovich Bulyga, R., Yuryevna Voronkova, O., Vasyutkina, L. V., Ryafikovna Saenko, N., Leonidovich Poltarykhin, A., & Aravindhan, S. (2022). A new trust management framework based on the experience of users in industrial cloud computing using multi-criteria decision making. Kybernetes, 51(6), 1949–1966. doi:10.1108/K-05-2021-0378.
[12] Wu, X. (2022). Performance Appraisal Management System of University Administrators Based on Hybrid Cloud. Scientific Programming, 9326563, 1-12. doi:10.1155/2022/9326563.
[13] Wang, C. (2022). English Process Assessment Based on Deep Learning and Cloud Computing. Wireless Communications and Mobile Computing, 2631693. doi:10.1155/2022/2631693.
[14] Li, H., Tian, L., Xu, G., Cañizares Abreu, J. R., Huang, S., Chai, S., & Xia, Y. (2024). Co-evolutionary and Elite learning-based bi-objective Poor and Rich Optimization algorithm for scheduling multiple workflows in the cloud. Future Generation Computer Systems, 152, 99–111. doi:10.1016/j.future.2023.10.015.
[15] Xu, D. Y., Cao, Q. G., HUANG, C. (2024). Intrusion detection model based on improved CBAM and BiGRU. Computer Technology and Development, 34(09), 88-93. doi:10.20165/j.cnki.ISSN1673-629X.2024.0201.
[16] Nawrocki, P., & Smendowski, M. (2024). FinOps-driven optimization of cloud resource usage for high-performance computing using machine learning. Journal of Computational Science, 79. doi:10.1016/j.jocs.2024.102292.
[17] Soni, A., & Sharma, N. (2023). Performance assessment and comparison of symmetric and asymmetric augmented data vortex architecture for HPC using efficient algorithm. Soft Computing, 27(7), 4235–4247. doi:10.1007/s00500-022-07087-8.
[18] Tomar, A., Kumar, R. R., & Gupta, I. (2023). Decision making for cloud service selection: a novel and hybrid MCDM approach. Cluster Computing, 26(6), 3869–3887. doi:10.1007/s10586-022-03793-y.
[19] Jordanov, J., Simeonidis, D., & Petrov, P. (2024). Containerized Microservices for Mobile Applications Deployed on Cloud Systems. International Journal of Interactive Mobile Technologies, 18(10), 48–58. doi:10.3991/ijim.v18i10.45929.
[20] Sharghivand, N., Derakhshan, F., Mashayekhy, L., & Mohammadkhanli, L. (2022). An Edge Computing Matching Framework with Guaranteed Quality of Service. IEEE Transactions on Cloud Computing, 10(3), 1557–1570. doi:10.1109/TCC.2020.3005539.
[21] Jain, V., & Kumar, B. (2022). Blockchain enabled trusted task offloading scheme for fog computing: A deep reinforcement learning approach. Transactions on Emerging Telecommunications Technologies, 33(11), 4587–1. doi:10.1002/ett.4587.
[22] Hu, W. (2022). Exploring the Practice of Teaching English Professional Translation Using IoT and Cloud Computing Multimedia Assistance. Journal of Sensors, 1399235. doi:10.1155/2022/1399235.
[23] Chopannejad, S., Roshanpoor, A., & Sadoughi, F. (2024). Attention-assisted hybrid CNN-BILSTM-BiGRU model with SMOTE–Tomek method to detect cardiac arrhythmia based on 12-lead electrocardiogram signals. Digital Health, 10, 20552076241234624. doi:10.1177/20552076241234624.
[24] Anuradha, C., & Ponnavaikko, M. (2022). A RNN based offloading scheme to reduce latency and preserve energy using RNNBOS. Measurement: Sensors, 24, 100429. doi:10.1016/j.measen.2022.100429.
[25] Nguyen, V. H., Do, T. C., & Ahn, K. K. (2024). Implementing PSO-LSTM-GRU Hybrid Neural Networks for Enhanced Control and Energy Efficiency of Excavator Cylinder Displacement. Mathematics, 12(20), 3185. doi:10.3390/math12203185.
[26] Liu, X., Xiang, R., & Xiang, W. (2024). Prediction of main steam parameters of combined cycle waste heat boiler based on KPCA-IPOA-BiGRU. National Foreign Electronic Measurement Technology, 43(6), 152–160.
[27] Qikai, L., & Wang, Y. (2024). An improved rich-poor optimization algorithm using multiple search strategies. Journal of Guangxi University for Nationalities (Natural Science Edition), 28(3), 58-67. doi:10.16177/j.cnki.gxmzzk.2022.03.012.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
