Eye Tracking Algorithm Based on Multi Model Kalman Filter

S. H. Ziafati Bagherzadeh, S. Toosizadeh

Abstract


One of the most important pieces of Human Machine Interface (HMI) equipment is an eye tracking system that is used for many different applications. This paper aims to present an algorithm in order to improve the efficiency of eye tracking in the image by means of a multi-model Kalman filter. In the classical Kalman filter, one model is used for estimation of the object, but in the multi-model Kalman filter, several models are used for estimating the object. The important features of the multiple-model Kalman filter are improving the efficiency and reducing its estimating errors relative to the classical Kalman filter. The proposed algorithm consists of two parts. The first step is recognizing the initial position of the eye, and Support Vector Machine (SVM) has been used in this part. In the second part, the position of the eye is predicted in the next frame by using a multi-model Kalman filter, which applies constant speed and acceleration models based on the normal human eye.

 

Doi: 10.28991/HIJ-2022-03-01-02

Full Text: PDF


Keywords


Eye Tracking; Multi-Model Kalman Filter; Support Vector Machine; Image Processing.

References


Xiong, J., Xu, W., Liao, W., Wang, Q., Liu, J., & Liang, Q. (2013). Eye control system based on ameliorated though transform algorithm. IEEE Sensors Journal, 13(9), 3421–3429. doi:10.1109/JSEN.2013.2262934.

Yuille, A. L., Hallinan, P. W., & Cohen, D. S. (1992). Feature extraction from faces using deformable templates. International Journal of Computer Vision, 8(2), 99–111. doi:10.1007/BF00127169.

Xie, X., Sudhakar, R., & Zhuang, H. (1994). On improving eye feature extraction using deformable templates. Pattern Recognition, 27(6), 791–799. doi:10.1016/0031-3203(94)90164-3.

Shah, J., Sharif, M., Raza, M., & Azeem, A. (2013). A survey: Linear and nonlinear PCA based face recognition techniques. International Arab Journal of Information Technology, 10(6), 536–545.

Huang, W., & Mariani, R. (2000). Face detection and precise eyes location. Proceedings - International Conference on Pattern Recognition, 15(4), 722–727. doi:10.1109/icpr.2000.903019.

Huang, J., & Wechsler, H. (1999). Eye detection using optimal wavelet packets and radial basis functions (RBFs). International Journal of Pattern Recognition and Artificial Intelligence, 13(7), 1009–1025. doi:10.1142/S0218001499000562.

Reinders, M. J. T., Koch, R. W. C., & Gerbrands, J. J. (1996). Locating facial features in image sequences using neural networks. Proceedings of the International Conference on Automatic Face and Gesture Recognition, 230–235. doi:10.1109/afgr.1996.557269.

Wang, C., Shi, F., Xia, S., & Chai, J. (2016). Real-time 3D eye gaze animation using a single RGB camera. ACM Transactions on Graphics, 35(4), 1–14. doi:10.1145/2897824.2925947.

Vrânceanu, R., Florea, C., Florea, L., & Vertan, C. (2015). Gaze direction estimation by component separation for recognition of Eye Accessing Cues. Machine Vision and Applications, 26(2–3), 267–278. doi:10.1007/s00138-014-0656-8.

Dong, C., Wang, X., Pei-Hua, C., & Pu-Liang, Y. (2015). Eye Detection Based on Integral Projection and Hough Round Transform. Proceedings - 2015 IEEE 5th International Conference on Big Data and Cloud Computing, BDCloud 2015, 252–255. doi:10.1109/BDCloud.2015.34.

Morcego, B., Argilés, M., Cabrerizo, M., Cardona, G., Pérez, R., Pérez-Cabré, E., & Gispets, J. (2016). Blinking supervision in a working environment. Journal of Biomedical Optics, 21(2), 025005. doi:10.1117/1.jbo.21.2.025005.

Lescroart, M. D., Kanwisher, N., & Golomb, J. D. (2016). No evidence for automatic remapping of stimulus features or location found with fMRI. Frontiers in Systems Neuroscience, 10(Jun), 53. doi:10.3389/fnsys.2016.00053.

Amiel, F., Barry, B., Trocan, M., & Swynghedauw, M. (2015). Real time image compression for eye tracking applications. 2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedings, 1–4. doi:10.1109/LASCAS.2015.7250463.

Zhu, Z., & Ji, Q. (2007). Novel eye gaze tracking techniques under natural head movement. IEEE Transactions on Biomedical Engineering, 54(12), 2246–2260. doi:10.1109/TBME.2007.895750.

Yoo, D. H., & Chung, M. J. (2005). A novel non-intrusive eye gaze estimation using cross-ratio under large head motion. Computer Vision and Image Understanding, 98(1), 25–51. doi:10.1016/j.cviu.2004.07.011.

Zhu, Z., Ji, Q., Fujimura, K., & Lee, K. (2002). Combining Kalman filtering and mean shift for real time eye tracking under active IR illumination. In Proceedings - International Conference on Pattern Recognition, IEEE, 16(4), 318–321. doi:10.1109/icpr.2002.1047460.

Zhang, Z., & Zhang, J. (2010). A new real-time eye tracking based on nonlinear unscented Kalman filter for monitoring driver fatigue. Journal of Control Theory and Applications, 8(2), 181–188. doi:10.1007/s11768-010-8043-0.

Li, Y., Deng, J., Wu, Q., & Wang, Y. (2021). Eye-Tracking Signals Based Affective Classification Employing Deep Gradient Convolutional Neural Networks. International Journal of Interactive Multimedia and Artificial Intelligence, 7(2), 34. doi:10.9781/ijimai.2021.06.002.

Barbara, N., Camilleri, T. A., & Camilleri, K. P. (2020). EOG-Based Ocular and Gaze Angle Estimation Using an Extended Kalman Filter. ACM Symposium on Eye Tracking Research and Applications. doi:10.1145/3379156.3391357.

Wu, Q., Dey, N., Shi, F., Crespo, R. G., & Sherratt, R. S. (2021). Emotion classification on eye-tracking and electroencephalograph fused signals employing deep gradient neural networks. Applied Soft Computing, 110, 107752. doi:10.1016/j.asoc.2021.107752.


Full Text: PDF

DOI: 10.28991/HIJ-2022-03-01-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Seyyed Hassan Ziafati Bagherzadeh, Saeed Toosizadeh