Ab-initio Study of Structural and Electronic Properties of Perovskite Nanocrystals of the CsSn[Br1−xIx]3 Family

D. D. Nematov, Kh. T. Kholmurodov, D.А. Yuldasheva, Kh. R. Rakhmonov, I. T. Khojakhonov


In this study, by means of quantum-chemical calculations within the framework of density functional theory, we considered a number of structural and electronic properties of nanocrystals of the CsSn[Br1−xIx]3 (systems CsSnBr3, CsSnBr2I, CsSnBrI2 and CsSnI3) and discussed the effect of iodine concentration on the geometry and electronic properties of these materials. The exchange correlation effects of electrons were taken into account by the LDA, GGA and the modified Becke-Jones exchange correlation potential (mBJ). The results obtained in the framework of the DFT-mBJ and the Wien2k packages are in good agreement with the data from experimental measurements and open up the possibility of accurately predicting a number of fundamental properties of perovskite-like complex structures and the development of new materials.


Doi: 10.28991/HIJ-2022-03-02-03

Full Text: PDF


Band Gap; Density Functional Theory; Electronic Structure; Perovskite; Wien2k Package.


Meng, L., Wu, X. G., Ma, S., Shi, L., Zhang, M., Wang, L., Chen, Y., Chen, Q., & Zhong, H. (2020). Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials. Nanophotonics, 9(1), 93–100. doi:10.1515/nanoph-2019-0320.

Coontz, R. (2013). Science’s Top 10 Breakthroughs of 2013. Science, New York, N.Y., USA, 1–4.

Afsari, M., Boochani, A., & Hantezadeh, M. (2016). Electronic, optical and elastic properties of cubic perovskite CsPbI3: Using first principles study. Optik, 127(23), 11433–11443. doi:10.1016/j.ijleo.2016.09.013.

Wu, T., & Gao, P. (2018). Development of perovskite-type materials for thermoelectric application. Materials, 11(6), 999.1-32. doi:10.3390/ma11060999.

Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., & Yamamoto, K. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2(5), 17032. doi:10.1038/nenergy.2017.32.

Parr, R. G., & Weitao, Y. (1995). Density-Functional Theory of Atoms and Molecules. In Density-Functional Theory of Atoms and Molecules. Oxford Scholarship Online, Oxford, UK. doi:10.1093/oso/9780195092769.001.0001.

Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G. K. H., & Marks, L. D. (2020). WIEN2k: An APW+lo program for calculating the properties of solids. Journal of Chemical Physics, 152(7), 74101. doi:10.1063/1.5143061.

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864–B871. doi:10.1103/physrev.136.b864.

Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133–A1138. doi:10.1103/physrev.140.a1133.

Koller, D., Tran, F., & Blaha, P. (2011). Merits and limits of the modified Becke-Johnson exchange potential. Physical Review B - Condensed Matter and Materials Physics, 83(19). doi:10.1103/PhysRevB.83.195134.

Marques, M. A. L., Oliveira, M. J. T., & Burnus, T. (2012). Libxc: A library of exchange and correlation functionals for density functional theory. Computer Physics Communications, 183(10), 2272–2281. doi:10.1016/j.cpc.2012.05.007.

Birch, F. (1947). Finite elastic strain of cubic crystals. Physical Review, 71(11), 809–824. doi:10.1103/PhysRev.71.809.

Kulbak, M., Gupta, S., Kedem, N., Levine, I., Bendikov, T., Hodes, G., & Cahen, D. (2016). Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. Journal of Physical Chemistry Letters 7(1), 167-172. doi:10.1021/acs.jpclett.5b02597.

Aamlid, S. S., Selbach, S. M., & Grande, T. (2020). Structural Evolution of Ferroelectric and Ferroelastic Barium Sodium Niobate Tungsten Bronze. Inorganic Chemistry, 59(12), 8514–8521. doi:10.1021/acs.inorgchem.0c00958.

Liu, S., Kim, Y., Tan, L. Z., & Rappe, A. M. (2016). Strain-induced ferroelectric topological insulator. Nano Letters, 16(3), 1663-1668. doi:10.1021/acs.nanolett.5b04545.

Chadov, S., Qi, X., Kübler, J., Fecher, G. H., Felser, C., & Zhang, S. C. (2010). Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Materials, 9(7), 541–545. doi:10.1038/nmat2770.

Davlatshoevich, N. D., Ashur, K. M., Saidali, B. A., Kholmirzotagoykulovich, K., Lyubchyk, A., & Ibrahim, M. (2022). Investigation of structural and optoelectronic properties of N-doped hexagonal phases of TiO2 (TiO2-xNx) nanoparticles with DFT realization: OPTIMIZATION of the band gap and optical properties for visible-light absorption and photovoltaic applications. In Biointerface Research in Applied Chemistry, 12(3), 3836–3848. doi:10.33263/BRIAC123.38363848.

Nematov, D. Computer analysis of electronic and structural properties of CsSnI3:Cl and CsPbI3:Cl nanocrystals. Electronic periodical peer-reviewed scientific journal "SCI-ARTICLE.RU" 2019, 76, 187-196.

Doroshkevich, A. S., Nabiev, A. A., Shylo, A. V., Pawlukojć, A., Doroshkevich, ….., Madadzada, A., Bodnarchuk, V. I., & Ibrahim, M. A. (2019). Frequency modulation of the Raman spectrum at the interface DNA - ZrO2 nanoparticles. Egyptian Journal of Chemistry, 62, 13–20. doi:10.21608/EJCHEM.2019.12898.1806.

Nematov, D. D., Burkhonzoda, A. S., Khusenov, M. A., Kholmurodov, K. T., Doroshkevich, A. S., Doroshkevich, N. V., Zelenyak, T. Y., & Majumder, S. (2019). Molecular Dynamics of DNA Damage and Conformational Behavior on a Zirconium-Dioxide Surface. Journal of Surface Investigation, 13(6), 1165–1184. doi:10.1134/S1027451019060430.

Nematov, D., Burhonzoda, A., Khusenov, M., Kholmurodov, K., Doroshkevych, A., Doroshkevych, N., Zelenyak, T., Majumder, S., Refaat, A., & Ibrahim, M. A. (2019). Molecular dynamics simulations of the DNA radiation damage and conformation behavior on a zirconium dioxide surface. Egyptian Journal of Chemistry, 62, 149–161. doi:10.21608/EJCHEM.2019.12981.1811.

Burkhonzoda, A., Giyosov, S., Nematov, D., Khusenov, M., Kholmurodov, H. (2019). Quanto-mechanical calculation of the electronic structure of ZrO2:Ti4+ in the framework of the density functional theory. Polytechnic Bulletin. Series: Intellect. Innovation. Investments, 3, 11-17.

Nematov, D. D., Burhonzoda, A. S., Khusenov, M. A., Kholmurodov, K. T., & Yamamoto, T. (2021). First Principles Analysis of Crystal Structure, Electronic and Optical Properties of CsSnI3–xBrx Perovskite for Photoelectric Applications. Journal of Surface Investigation, 15(3), 532–536. doi:10.1134/S1027451021030149

Burkhonzoda, A.S., Nematov, D.D., Khodzhakhonov, I.T.; Boboshirov, D.I. (2021). Optical properties of nanocrystals of the TiO2-xNx system. SCI-ARTICLE.RU, 92, 176-187.

Burkhonzoda, A.S., Nematov, D.D., Kholmurodov, Kh.T. (2021). Structural and electronic properties of nanoscale thin films based on ZrO2. SCI-ARTICLE.RU, 92, 143-1152.

Nematov, D.D. (2020). Modeling the impact of ionizing radiation on the process of immobilization of biological molecules. SCI-ARTICLE.RU, 81, 12-35.

Nematov, D.D. (2021). Research and optimization of optoelectronic properties of N-doped titanium dioxide (TiO2-xNx) nanoparticles for photovoltaic applications. SCI-ARTICLE.RU, 91, 110-130.

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188–5192. doi:10.1103/physrevb.13.5188.

Clark, S. J., Donaldson, J. D., & Harvey, J. A. (1995). Evidence for the direct population of solid-state bands by non-bonding electron pairs in compounds of the type CsMIIX3 (M II=Ge, Sn, Pb; X=Cl, Br, l). Journal of Materials Chemistry, 5(11), 1813–1818. doi:10.1039/jm9950501813.

Chen, Z., Wang, J. J., Ren, Y., Yu, C., & Shum, K. (2012). Schottky solar cells based on CsSnI3 thin-films. Applied physics letters, 101(9), 093901. doi:10.1063/1.4748888.

Jaroenjittichai, A. P., & Laosiritaworn, Y. (2018). Band alignment of cesium-based halide perovskites. Ceramics International, 44, S161-S163. doi:10.1016/j.ceramint.2018.08.124.

Clark, S. J., & Donaldson, J. D. (1995). High-temperature Mössbauer studies on 119Sn-enriched caesium tin(II) chlorides and bromides. Journal of the Chemical Society, Dalton Transactions, 17, 2723–2727. doi:10.1039/DT9950002723.

Borriello, I., Cantele, G., & Ninno, D. (2008). Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Physical Review B, 77(23), 235214. doi:10.1103/PhysRevB.77.235214.

Tripathy, A., Behera, M., Rout, A. S., Biswal, S. K., & Phule, A. D. (2020). Optical, structural, and antimicrobial study of gold nanoparticles synthesized using an aqueous extract of mimusops elengi raw fruits. Biointerface Research in Applied Chemistry, 10(6), 7085–7096. doi:10.33263/BRIAC106.70857096.

Najm, A. S., Moria, H., & Ludin, N. A. (2020). Areca catechu as photovoltaic sensitizer for dye-sensitized solar cell (DSSC). Biointerface Research in Applied Chemistry, 10(3), 5636–5639. doi:10.33263/BRIAC103.636639.

Belabbas, M., Marbouh, N., Arbouche, O., & Hussain, A. (2020). Optoelectronic properties of the novel perovskite materials LiPb(Cl:Br:I)3 for enhanced hydrogen production by visible photo-catalytic activity: Theoretical prediction based on empirical formulae and DFT. International Journal of Hydrogen Energy, 45(58), 33466–33477. doi:10.1016/j.ijhydene.2020.09.066.

Bartel, C. J., Clary, J. M., Sutton, C., Vigil-Fowler, D., Goldsmith, B. R., Holder, A. M., & Musgrave, C. B. (2020). Inorganic Halide Double Perovskites with Optoelectronic Properties Modulated by Sublattice Mixing. Journal of the American Chemical Society, 142(11), 5135–5145. doi:10.1021/jacs.9b12440.

Zyuz’kov, G. N., Miroshnichenko, L. A. E., Polykova, T. Y., Stavrova, L. A., & Simanina, E. V. (2022). Inhibition of adenylate cyclase of regeneration-competent cells of nervous tissue: A novel approach for the treatment of alcoholic encephalopathy. Biointerface Research in Applied Chemistry, 12(2), 1547–1560. doi:10.33263/BRIAC122.15471560.

Folgueras, M. C., Jin, J., Gao, M., Quan, L. N., Steele, J. A., Srivastava, S., Ross, M. B., Zhang, R., Seeler, F., Schierle-Arndt, K., Asta, M., & Yang, P. (2021). Lattice Dynamics and Optoelectronic Properties of Vacancy-Ordered Double Perovskite Cs2TeX6(X=Cl-,Br-,I-) Single Crystals. Journal of Physical Chemistry C, 125(45), 25126–39. doi:10.1021/acs.jpcc.1c08332.

Irzaman, Rahmawaty, V., Palupi, E. K., Patonah, N., Sumaryada, T., Siskandar, R., Alatas, H., Iqbal, M., Yuliarto, B., Fahmi, M. Z., Rusydi, F., & Nugroho, W. S. (2021). The effect of photoconductive mole fraction based on thin film BaxSr1-xTiO3 (X= 0.000; 0.125; 0.250; 0.375; 0.500) on electrical properties and diffusivity coefficient. Biointerface Research in Applied Chemistry, 11(6), 14956–14963. doi:10.33263/BRIAC116.1495614963.

Liu, J., Qu, J., Kirchartz, T., & Song, J. (2021). Optoelectronic devices based on the integration of halide perovskites with silicon-based materials. Journal of Materials Chemistry A, 9(37), 20919–20940. doi:10.1039/d1ta04527j.

Mullamuri, B., Sai Sriram Mosali, V., Maseed, H., Majety, S. S., & Chandu, B. (2021). Photocatalytic activity of heavy metal doped Cds nanoparticles synthesized by using ocimum sanctum leaf extract. Biointerface Research in Applied Chemistry, 11(5), 12547–12559. doi:10.33263/BRIAC115.1254712559.

Full Text: PDF

DOI: 10.28991/HIJ-2022-03-02-03


Copyright (c) 2022 Dilshod Davlatshoevich Nematov