Comparative Analysis of Meteorological Drought based on the SPI and SPEI Indices

Cheikh Faye

Abstract


The management of water resources in our states has become increasingly difficult in recent times due to the frequency and intensity of droughts. In the context of climate change, extreme weather and climate phenomena such as floods and droughts that are increasingly occurring have adverse consequences on the socio-economic development of the Senegalese territory. Droughts that affect water availability, agricultural production, and livestock operations are generally identified and characterized using drought indices. The objective of this paper is to analyze the hydrological drought trend in two Senegalese regions, the Senegal River valley and the Casamance basin, with different climatic characteristics (Sahelian continental climate and South Sudanian tropical climate, respectively) during the period 1981-2017. For this purpose, daily data from uniformly installed 8 meteorological stations in the two areas were examined, and trends in the standardized precipitation index (SPI) and standardized precipitation-evapotranspiration index (SPEI) were also assessed. The similarities and differences between the indices of the two regions were then examined. In most stations in both areas, there is a statistically significant trend of increasing SPI and SPEI (75% of the stations for SPI and 87.5% for SPEI), despite some negative trends (e.g., SPI in Bakel, SPE and SPEI in Matam, SPEI in Saint Louis). Moreover, the trend of the indices averaged over the stations of the two indices, although generally positive in the two climatic zones considered (with the exception of the SPI in the valley where it is negative), is only significant in the Casamance basin zone.

 

Doi: 10.28991/HIJ-SP2022-03-02

Full Text: PDF


Keywords


Climate Change; Standardised Index; SPI; SPEI; Trend; Hydrological Drought; Environmental Issues.

References


World Meteorological Organization. (2006). Drought monitoring and early warning : concepts, progress and future challenges. World Meteorological Organization, 1006, 24. Available online: http://www.wamis.org/agm/pubs/brochures/WMO1006e.pdf (accessed on April 2021).

Falzoi, S., Acquaotta, F., Pulina, M. A., & Fratianni, S. N. (2019). Hydrological drought analysis in continental temperate and mediterranean environment during the period 1981-2017. Italian Journal of Agrometeorology, 2019(3), 13–23. doi:10.13128/ijam-798.

Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45–65. doi:10.1002/wcc.81.

Bordi, I., Fraedrich, K., & Sutera, A. (2009). Observed drought and wetness trends in Europe: An update. Hydrology and Earth System Sciences, 13(8), 1519–1530. doi:10.5194/hess-13-1519-2009.

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. doi:10.1175/2009JCLI2909.1.

Bevan, S. L., Los, S. O., & North, P. R. J. (2014). Response of vegetation to the 2003 European drought was mitigated by height. Biogeosciences, 11(11), 2897–2908. doi:10.5194/bg-11-2897-2014.

Vicente-Serrano, S. M., Beguería, S., Gimeno, L., Eklundh, L., Giuliani, G., Weston, D., El Kenawy, A., López-Moreno, J. I., Nieto, R., Ayenew, T., Konte, D., Ardö, J., & Pegram, G. G. S. (2012). Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Applied Geography, 34, 471–486. doi:10.1016/j.apgeog.2012.02.001.

Botai, C. M., Botai, J. O., Dlamini, L. C., Zwane, N. S., & Phaduli, E. (2016). Characteristics of droughts in South Africa: A case study of free state and North West provinces. Water (Switzerland), 8(10), 1–23. doi:10.3390/w8100439.

Wilhite, D. A., & Glantz, M. H. (2019). Understanding the drought phenomenon: The role of definitions. Planning for Drought: Toward A Reduction of Societal Vulnerability, 10, 11–27. doi:10.4324/9780429301735-2.

Dracup, J. A., Lee, K. S., & Paulson, E. G. (1980). On the definition of droughts. Water Resources Research, 16(2), 297–302. doi:10.1029/WR016i002p00297.

Santos Pereira, L., Cordery, I., & Iacovides, I. (2009). Coping with Water Scarcity. . In Addressing the Challenges; Springer Science and Business Media: Dordrecht, the Netherlands. doi:10.1007/978-1-4020-9579-5.

Halwatura, D., Lechner, A. M., & Arnold, S. (2015). Drought severity-duration-frequency curves: A foundation for risk assessment and planning tool for ecosystem establishment in post-mining landscapes. Hydrology and Earth System Sciences, 19(2), 1069–1091. doi:10.5194/hess-19-1069-2015.

Wilhite, D. A. (1993). Drought Assessment, Management, and Planning: Theory and Case Studies. Springer, Boston, MA. United States. doi:10.1007/978-1-4615-3224-8.

Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19(1), 333–349. doi:10.1139/a11-013.

Faye, C. (2013). Characteristics of Drought in Senegal: Analysis Methods, Types of Impacts and Management Models. Published by Editions Universitaires Européennes, Riga, Latvia.

Faye, C., Ndiaye, A., & Mbaye, I. (2017). A Comparative Assessment of Sequences of Drought Weather Indices, By Time Scales and Climate in Senegal Areas. Journal of Water and Environmental Sciences, 1(1), 11–28.

Faye, C., Sow, A. A., & Ndong, J. B. (2015). Study of rainfall and hydrological droughts in tropical Africa: Characterization and Mapping of Drought Indices in the High Basin of the River Senegal. Physio-Geo, 9, 17–35.

Chen, T., Werf, G. R., Jeu, R. A. M., Wang, G., & Dolman, A. J. (2013). A global analysis of the impact of drought on net primary productivity. Hydrology and Earth System Sciences, 17(10), 3885–3894. doi:10.5194/hess-17-3885-2013.

Faye, C., Manuela, G., & Wood, S. (2019). Use of the Standardized Precipitation and Evapotranspiration Index (SPEI) from 1950 to 2018 to determine drought trends in the Senegalese territory. Climate Change, 5(October), 327–341.

Potop, V., Boroneanţ, C., Možný, M., Štěpánek, P., & Skalák, P. (2014). Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theoretical and Applied Climatology, 115(3–4), 563–581. doi:10.1007/s00704-013-0908-y.

Faye, C. (2015). Analysis of trends in regional distribution and intensity of rainfall: use of climate indices in the Casamance basin Senegal. Courrier Du Savoir, Algeria, 25, 53–60.

Faye, C. (2018). Analysis of Drought Trends in Senegalese Coastal Zone on Different Climatic Domains (1951-2010). Analele Universităţii Din Oradea: Seria Geografie, 28(2), 231–244.

Kala, R., & Kala, C. (2006). Indigenous water conservation technology of Sumari village, Uttaranchal. Indian Journal of Traditional Knowledge (IJTK), 05(3), 394–396.

Dacosta H., Konaté Y. K., M. R. (2002). La variabilité spatio-temporelle des précipitations au Sénégal depuis un siècle. Friend 2002 - Regional hydrology : Bringing the Gap between Research and Pratice, Cape Town, South Africa, Publ IAHS 274 (2002), pp. 499-506. Aish, 274, 499–506.

Sané T., Sy O. and Dieye E. H. B., (2011) Climate change and vulnerability of the city of Ziguinchor. Proceedings of the conference "Strengthening the resilience to climate change of cities: from spatialized diagnosis to adaptation measures" (2R2CV) in July 2011, 1-14. Université Paul Verlaine - Metz, France.

PADERCA (Rural Development Support Project in Casamance). (2008). Establishment of the baseline situation of the natural environment in lower and middle Casamance. Republic of Senegal Ministry of Agriculture Final report, Senegal.

Senegal River Development Organization (OMVS). (2008). Strategic Action Plan for the Management of Priotity Environmental Problems in the Senegal River Basin. Final Version, GEF Project/Senegal River Basin, 133.

Faye C., Ba D. D. and Sy B., (2019). Quantification of meteorological drought by standardized rainfall indices in the Senegal River valley from 1980 to 2017. Dynamiques des territoires et développement, Leïdi, 21, 108-122.

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Anaheim, California, United States. 17(22), 179-183.

Kouassi A.M., N'Guessan B.T.M., Kouame K.F., Kouame K.A., Okaingni J.C., BIEMI J. (2012). Application of the cross-simulation method to the analysis of trends in the rainfall-flow relationship using the GR2M model: case of the N'zi-Bandama watershed (Côte d'Ivoire). Comptes Rendus de l'Académie des Sciences, Geoscience, Tome 344, 288-296.

N'guessan, K., Kouassi, A. M., Gnaboa, R., Traore, K. S., & Houenou, P. V. (2014). Analysis of hydrological phenomena in an urbanized watershed: Case of the city of Yamoussoukro (Central Ivory Coast). Larhyss Journal, 17, 135-154.

Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38(1), 55. doi:10.2307/210739.

Florentin, J. J., Abramowitz, M., & Stegun, I. A. (1966). Handbook of Mathematical Functions. In The American Mathematical Monthly, 73(10). NewYork, NY, USA. doi:10.2307/2314682.

Khan, M., & Gadiwala, M. (2013). A Study of Drought over Sindh (Pakistan) Using Standardized Precipitation Index (SPI) 1951 to 2010. Pak J Meteorology, 9(18), 15–22.

Giaccone, E., Colombo, N., Acquaotta, F., Paro, L., & Fratianni, S. (2015). Climate variations in a high altitude Alpine basin and their effects on a glacial environment (Italian Western Alps). Atmosfera, 28(2), 117–128. doi:10.20937/ATM.2015.28.02.04.

Abiodun, B. J., Odoulami, R. C., Sawadogo, W., Oloniyo, O. A., Abatan, A. A., New, M., … MacMartin, D. G. (2021). Potential impacts of stratospheric aerosol injection on drought risk managements over major river basins in Africa. Climatic Change, 169(3-4). doi:10.1007/s10584-021-03268-w.

SANE, T., DIOP, M., & SAGNA, P. (2008). Etude de la qualité de la saison pluvieuse en Haute-Casamance (Sud Sénégal). Sécheresse (Montrouge), 19(1), 23–28. doi:10.1684/sec.2008.0121.

Ali, A., & Lebel, T. (2009). The Sahelian standardized rainfall index revisited. International Journal of Climatology, 29(12), 1705–1714. doi:10.1002/joc.1832.

Chun, K. P., Dieppois, B., He, Q., Sidibe, M., Eden, J., Paturel, J. E., ... & Conway, D. (2021). Identifying drivers of streamflow extremes in West Africa to inform a nonstationary prediction model. Weather and Climate Extremes, 33, 100346. doi:10.1016/j.wace.2021.100346.

Niang, A. J., Ozer, A., & Ozer, P. (2008). Fifty years of landscape evolution in Southwestern Mauritania by means of aerial photos. Journal of Arid Environments, 72(2), 97–107. doi:10.1016/j.jaridenv.2007.04.009.

Wang, X., Chen, Z.-H., Yang, C., Zhang, X., Jin, G., Chen, G., … Dai, F. (2018). Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope. Proceedings of the National Academy of Sciences, 115(20), 5223–5228. doi:10.1073/pnas.1721749115.

Sow S. and Gaye D., (2016). Impacts of rainfall variations on surface runoff in the Senegal valley. Revue de Géographie de l'Université Ouaga I Pr Joseph KI-ZERBO 2(5), 167-183.

Alamou, E., Gandomè, A., Quenum, M. L. D., Lawin, E. A., Badou, D. F., & Afouda, A. A. (2016). Spatio-Temporal Variability of Rainfall in the Ouémé Basin, Bénin. Afrique Science, 12, 315-328.

Wu W. (2003). Application de la géomatique au suivi de la dynamique environnementale en zones arides: Exemple de la région de Nouakchott en Mauritanie, du Ningxia nord et du Shaanxi nord en Chine du nord-ouest (Application of geomatics to the monitoring of environmental dynamics in arid zones: Examples of the Nouakchott region in Mauritania, Northern Ningxia and Northern Shaanxi in northwest China), Doctoral dissertation in geography, University of Paris 1 Panthéon-Sorbonne, Paris, France.

Biasutti, M. (2019). Rainfall trends in the African Sahel: Characteristics, processes, and causes. WIREs Climate Change, 10(4). doi:10.1002/wcc.591.

OECD/SWAC. (2008). Climate, Climate Change and Agro-Pastoral Practices in Sahelian Zones (for the High Level Conference on World Food Security: The Challenges of Climate Change and Bioenergy), SWAC Briefing Note, No. 3, 1-8.

Fratianni, S., & Acquaotta, F. (2017). The Climate of Italy. Landscapes and Landforms of Italy, 29–38. doi:10.1007/978-3-319-26194-2_4

Coll, J. R., Aguilar, E., & Ashcroft, L. (2017). Drought variability and change across the Iberian Peninsula. Theoretical and Applied Climatology, 130(3–4), 901–916. doi:10.1007/s00704-016-1926-3.

Wang, X., Chen, Z.-H., Yang, C., Zhang, X., Jin, G., Chen, G., … Dai, F. (2018). Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope. Proceedings of the National Academy of Sciences, 115(20), 5223–5228. doi:10.1073/pnas.1721749115).

Ba D. D. (2018). Climatic drought, current dynamics and perspectives of agropastoral activities in the Ferlo and the Middle Senegal River Valley (Matam Region). Single doctoral thesis, Université Gaston Berger de Saint-Louis. Section de géographie, Missouri, United States.

Faye, C. (2013). Evaluation and integrated management of water resources in a context of hydroclimatic variability: the case of the Falémé watershed. Thesis (PhD). Université Cheikh Anta Diop de Dakar, Dakar, Senegal.


Full Text: PDF

DOI: 10.28991/HIJ-SP2022-03-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Cheikh Faye