Characterization of Structural Transition and Heterogeneity under Compression for Liquid Al2O3 Using Molecular Dynamics Simulation

Pham Huu Kien, Tran Thi Quynh Nhu, Giap Thi Thuy Trang

Abstract


We have performed a simulation of the structural transition and Structural Heterogeneity (SH) in liquid Al2O3 at 3500 K, in the range of 0–100 GPa. The results confirmed that the network structure of liquid alumina is built mainly from AlOx (x = 3, 4, 5, 6, 7) units, which are related to each other through the common oxygen atoms. The existence of separate AlO3-, AlO4-, AlO5-, AlO6- and AlO7- phases, where SH of the network structure can be sufficiently determined, besides, the existence of separate phases is clarified for SH in the liquid of Al2O3. In particular, at a pressure below 10 and beyond 20 GPa, AlOx units are uniformly distributed in the space and non-uniformly distributed in the range 10-20 GPa. Our study is expected to contribute to a simple way to determine the structural heterogeneity and diffusion coefficients of oxide systems.

 

Doi: 10.28991/HIJ-2022-03-02-08

Full Text: PDF


Keywords


Molecular Dynamics; Liquid; Network Structure; Phase; Cluster; Structural Transition.

References


Landron, C., Hennet, L., Jenkins, T. E., Greaves, G. N., Coutures, J. P., & Soper, A. K. (2001). Liquid alumina: Detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement. Physical Review Letters, 86(21), 4839–4842. doi:10.1103/PhysRevLett.86.4839.

Neuville, D. R., Ligny, D. de, Cormier, L., Henderson, G. S., Roux, J., Flank, A.-M., & Lagarde, P. (2009). The crystal and melt structure of spinel and alumina at high temperature: An in-situ XANES study at the Al and Mg K-edge. Geochimica et Cosmochimica Acta, 73(11), 3410–3422. doi:10.1016/j.gca.2009.02.033.

Krishnan, S., Ansell, S., & Price, D. L. (1998). X-ray diffraction from levitated liquid yttrium oxide. Journal of the American Ceramic Society, 81(7), 1967–1969. doi:10.1111/j.1151-2916.1998.tb02578.x.

Kovarik, L., Bowden, M., & Szanyi, J. (2021). High temperature transition aluminas in δ-Al2O3/θ-Al2O3 stability range: Review. Journal of Catalysis, 393, 357–368. doi:10.1016/j.jcat.2020.10.009.

Shi, C., Alderman, O. L. G., Berman, D., Du, J., Neuefeind, J., Tamalonis, A., Weber, J. K. R., You, J., & Benmore, C. J. (2019). The structure of amorphous and deeply supercooled liquid alumina. Frontiers in Materials, 6, 38. doi:10.3389/fmats.2019.00038.

Jahn, S., & Madden, P. A. (2007). Structure and dynamics in liquid alumina: Simulations with an ab initio interaction potential. Journal of Non-Crystalline Solids, 353(32-40), 3500–3504. doi:10.1016/j.jnoncrysol.2007.05.104.

Gutiérrez, G., Belonoshko, A. B., Ahuja, R., & Johansson, B. (2000). Structural properties of liquid [Formula Presented] A molecular dynamics study. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 61(3), 2723–2729. doi:10.1103/PhysRevE.61.2723.

Verma, A. K., Modak, P., & Karki, B. B. (2011). First-principles simulations of thermodynamical and structural properties of liquid Al2O3 under pressure. Physical Review B - Condensed Matter and Materials Physics, 84(17), 174116. doi:10.1103/PhysRevB.84.174116.

He, D., Liu, F., Guan, S., & He, D. (2021). High-pressure work hardening of alumina. Ceramics International, 47(14), 19989–19994. doi:10.1016/j.ceramint.2021.04.009.

Waseda, Y., Sugiyama, K., & Toguri, J. M. (1995). Direct Determination of the Local Structure in Molten Alumina by High Temperature X-Ray Diffraction. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 50(8), 770–774. doi:10.1515/zna-1995-0809.

Ansell, S., Krishnan, S., Weber, J. K. R., Felten, J. J., Nordine, P. C., Beno, M. A., Price, D. L., & Saboungi, M. L. (1997). Structure of liquid aluminum oxide. Physical Review Letters, 78(3), 464–466. doi:10.1103/PhysRevLett.78.464.

Hennet, L., Thiaudière, D., Gailhanou, M., Landron, C., Coutures, J. P., & Price, D. L. (2002). Fast x-ray scattering measurements on molten alumina using a 120° curved position sensitive detector. Review of Scientific Instruments, 73(1), 124. doi:10.1063/1.1426228.

Hemmati, M., Wilson, M., & Madden, P. A. (1999). Structure of liquid Al2O3 from a computer simulation model. Journal of Physical Chemistry B, 103(20), 4023–4028. doi:10.1021/jp983529f.

Ahuja, R., Belonoshko, A. B., & Johansson, B. (1998). Melting and liquid structure of aluminum oxide using a molecular-dynamics simulation. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 57(2), 1673–1676. doi:10.1103/PhysRevE.57.1673.

Hoang, V. Van, & Oh, S. K. (2004). Molecular dynamics study of aging effects in supercooled [Formula Presented]. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 70(6), 8. doi:10.1103/PhysRevE.70.061203.

Kien, P. H., An, P. M., Trang, G. T. T., & Hung, P. K. (2019). The structural transition under compression and correlation between structural and dynamical heterogeneity for liquid Al2O3. International Journal of Modern Physics B, 33(31), 1950380. doi:10.1142/S0217979219503806.

Vashishta, P., Kalia, R. K., Nakano, A., & Rino, J. P. (2008). Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina. Journal of Applied Physics, 103(8), 83504. doi:10.1063/1.2901171.

Hong, N. V., Vinh, L. T., Hung, P. K., Dung, M. V., & Yen, N. V. (2019). The structural transition under densification and the relationship between structure and density of silica glass. European Physical Journal B, 92(8), 1–7. doi:10.1140/epjb/e2019-100137-7.

Hoang, V. Van, & Oh, S. K. (2005). Computer simulation of the structural transformation in liquid Al2O3. Journal of Physics Condensed Matter, 17(19), 3025–3033. doi:10.1088/0953-8984/17/19/016.

Skinner, L. B., Barnes, A. C., Salmon, P. S., Hennet, L., Fischer, H. E., Benmore, C. J., Kohara, S., Weber, J. K. R., Bytchkov, A., Wilding, M. C., Parise, J. B., Farmer, T. O., Pozdnyakova, I., Tumber, S. K., & Ohara, K. (2013). Joint diffraction and modeling approach to the structure of liquid alumina. Physical Review B - Condensed Matter and Materials Physics, 87(2), 24201. doi:10.1103/PhysRevB.87.024201.

San Miguel, M. A., Fernández Sanz, J., & Álvarez, L. J. (1998). Molecular-dynamics simulations of liquid aluminum oxide. Physical Review B - Condensed Matter and Materials Physics, 58(5), 2369–2371. doi:10.1103/PhysRevB.58.2369.

Van Hoang, V. (2005). About an order of liquid-liquid phase transition in simulated liquid Al2O3. Physics Letters, Section A: General, Atomic and Solid State Physics, 335(5–6), 439–443. doi:10.1016/j.physleta.2004.12.040.

Hung, P. K., & Vinh, L. T. (2008). Local microstructure of amorphous Al2O3. Physica Status Solidi (B) Basic Research, 245(5), 950–958. doi:10.1002/pssb.200844047.

Hong, N. V., Lan, M. T., Nhan, N. T., & Hung, P. K. (2013). Polyamorphism and origin of spatially heterogeneous dynamics in network-forming liquids under compression: Insight from visualization of molecular dynamics data. Applied Physics Letters, 102(19), 191908. doi:10.1063/1.4807134.

Ha, N. T. T., Hong, N. V., & Hung, P. K. (2019). Network structure and dynamics heterogeneities in Al2O3 system: insight from visualization and analysis of molecular dynamics data. Indian Journal of Physics, 93(8), 971–978. doi:10.1007/s12648-018-01358-7.

Belashchenko, D. K. (1997). Computer simulation of the structure and properties of non-crystalline oxides. Russian Chemical Reviews, 66(9), 733–762. doi:10.1070/rc1997v066n09abeh000236.

Hung, P. K., Vinh, L. T., Hong, N. V., Thu Ha, N. T., & Iitaka, T. (2018). Two-domain structure and dynamics heterogeneity in a liquid SiO2. Journal of Non-Crystalline Solids, 484, 124–131. doi:10.1016/j.jnoncrysol.2018.01.023.

Lan, M. T., Thi Thanh Ha, N., Van Hong, N., & Hung, P. K. (2019). Structure and dynamical heterogeneity in GeO2 liquid: a new approach. European Physical Journal B, 92(6), 1–7. doi:10.1140/epjb/e2019-100021-6.

Salmon, P. S., Drewitt, J. W. E., Whittaker, D. A. J., Zeidler, A., Wezka, K., Bull, C. L., Tucker, M. G., Wilding, M. C., Guthrie, M., & Marrocchelli, D. (2012). Density-driven structural transformations in network forming glasses: A high-pressure neutron diffraction study of GeO 2 glass up to 17.5GPa. Journal of Physics Condensed Matter, 24(41), 415102. doi:10.1088/0953-8984/24/41/415102.

Biswas, P., Atta-Fynn, R., & Drabold, D. A. (2004). Reverse Monte Carlo modeling of amorphous silicon. Physical Review B - Condensed Matter and Materials Physics, 69(19), 195207. doi:10.1103/PhysRevB.69.195207.

Guignard, M., & Cormier, L. (2008). Environments of Mg and Al in MgO-Al2O3-SiO2 glasses: A study coupling neutron and X-ray diffraction and Reverse Monte Carlo modeling. Chemical Geology, 256(3–4), 111–118. doi:10.1016/j.chemgeo.2008.06.008.


Full Text: PDF

DOI: 10.28991/HIJ-2022-03-02-08

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Giap Thi Thuy Trang, Pham Huu Kien, Tran Thi Quynh Nhu