Soil Quality Evaluation in Urban Ecosystems during the Covid-19 Pandemic

Nataliia Mironova, Olha Yefremova, Halyna Biletska, Ihor Bloshchynskyi, Ihor Koshelnyk, Serhii Sych, Maksym Filippov, Serhii Sinkevych, Vasyl Kravchuk


The article considers the changes in some agrochemical parameters and the content of plumbum in the soil cover of a medium-sized urban ecosystem after the introduction of quarantine measures in connection with the Covid-19 pandemic. It has been determined that the blocking of anthropogenic activity did not affect the content of humus. There were changes in soil pH, which led to the transition from an alkaline reaction to a neutral one. The amount of fertilizer elements (NPK) in the soil in the post-quarantine period has been increased. The content of the mobile (active) form of plumbum within the city has been halved on average. In general, the impact of quarantine from Covid-19 on the condition of the soil cover as well as on air and surface water can be preliminary considered as positive.


Doi: 10.28991/HIJ-SP2022-03-04

Full Text: PDF


Covid-19; Soil; Urban Ecosystem; Active Soil Reaction; NPK; Plumbum.


European Centre for Disease Prevention and Control. (2020). COVID-19 situation update worldwide, as of 8 August 2020. Available online: (accessed on April 2022).

Public Health Center of the Ministry of Health of Ukraine (2022). Coronavirus Infection COVID-19: Operational information. Available online: [In Ukrainian] (accessed on April 2022).

Zhu, Y., Xie, J., Huang, F., & Cao, L. (2020). Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Science of the Total Environment, 727, 138704. doi:10.1016/j.scitotenv.2020.138704.

Espejo, W., Celis, J. E., Chiang, G., & Bahamonde, P. (2020). Environment and COVID-19: Pollutants, impacts, dissemination, management and recommendations for facing future epidemic threats. Science of the Total Environment, 747, 141314. doi:10.1016/j.scitotenv.2020.141314.

Shakil, M. H., Munim, Z. H., Tasnia, M., & Sarowar, S. (2020). COVID-19 and the environment: A critical review and research agenda. Science of the Total Environment, 745, 141022. doi:10.1016/j.scitotenv.2020.141022.

Bilal, Bashir, M. F., Benghoul, M., Numan, U., Shakoor, A., Komal, B.,… Tan, D. (2020). Environmental pollution and COVID-19 outbreak: insights from Germany. Air Quality, Atmosphere & Health, 13(11), 1385–1394. doi:10.1007/s11869-020-00893-9.

Li, L., Li, Q., Huang, L., Wang, Q., Zhu, A., Xu, J., … Chan, A. (2020). Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Science of the Total Environment, 732, 139282. doi:10.1016/j.scitotenv.2020.139282.

Collivignarelli, M. C., Abbà, A., Bertanza, G., Pedrazzani, R., Ricciardi, P., & Carnevale Miino, M. (2020). Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Science of the Total Environment, 732. doi:10.1016/j.scitotenv.2020.139280.

Paital, B. (2020). Nurture to nature via COVID-19, a self-regenerating environmental strategy of environment in global context. The Science of the Total Environment, 729, 139088. doi:10.1016/j.scitotenv.2020.139088.

Muhammad, S., Long, X., & Salman, M. (2020). COVID-19 pandemic and environmental pollution: A blessing in disguise? Science of the Total Environment, 728, 138820. doi:10.1016/j.scitotenv.2020.138820.

Bontempi, E., Vergalli, S., & Squazzoni, F. (2020). Understanding COVID-19 diffusion requires an interdisciplinary, multi-dimensional approach. Environmental Research, 188, 109814. doi:10.1016/j.envres.2020.109814.

Bashir, M. F., Ma, B., & Shahzad, L. (2020). A brief review of socio-economic and environmental impact of Covid-19. Air Quality, Atmosphere and Health, 13(12), 1403–1409. doi:10.1007/s11869-020-00894-8.

Braga, F., Scarpa, G. M., Brando, V. E., Manfè, G., & Zaggia, L. (2020). COVID-19 lockdown measures reveal human impact on water transparency in the Venice Lagoon. Science of the Total Environment, 736. doi:10.1016/j.scitotenv.2020.139612.

Garg, V., Aggarwal, S. P., & Chauhan, P. (2020). Changes in turbidity along Ganga River using Sentinel-2 satellite data during lockdown associated with COVID-19. Geomatics, Natural Hazards and Risk, 11(1), 1175–1195. doi:10.1080/19475705.2020.1782482.

McCunn, L. J. (2020). The importance of nature to city living during the COVID-19 pandemic: Considerations and goals from environmental psychology. Cities & Health, 1–4. doi:10.1080/23748834.2020.1795385.

Cui, N., Feng, C. C., Han, R., & Guo, L. (2019). Impact of urbanization on ecosystem health: A case study in Zhuhai, China. International Journal of Environmental Research and Public Health, 16(23), 4717. doi:10.3390/ijerph16234717.

Li, G., Sun, G. X., Ren, Y., Luo, X. S., & Zhu, Y. G. (2018). Urban soil and human health: a review. European Journal of Soil Science, 69(1), 196–215. doi:10.1111/ejss.12518.

Beroigui, M., Naylo, A., Walczak, M., Hafidi, M., Charzyński, P., Świtoniak, M., Różański, S., & Boularbah, A. (2020). Physicochemical and microbial properties of urban park soils of the cities of Marrakech, Morocco and Toruń, Poland: Human health risk assessment of fecal coliforms and trace elements. Catena, 194, 104673. doi:10.1016/j.catena.2020.104673.

Jeong, H., Choi, J. Y., & Ra, K. (2020). Characteristics of Heavy Metal Pollution in Road Dust from Urban Areas: Comparison by Land Use Types. Journal of Environmental Analysis, Health and Toxicology, 23(2), 101–111. doi:10.36278/jeaht.23.2.101.

Meng, Y., Cave, M., & Zhang, C. (2020). Identifying geogenic and anthropogenic controls on different spatial distribution patterns of aluminium, calcium and lead in urban topsoil of Greater London Authority area. Chemosphere, 238, 124541. doi:10.1016/j.chemosphere.2019.124541.

Equiza, M. A., Calvo-Polanco, M., Cirelli, D., Señorans, J., Wartenbe, M., Saunders, C., & Zwiazek, J. J. (2017). Long-term impact of road salt (NaCl) on soil and urban trees in Edmonton, Canada. Urban Forestry & Urban Greening, 21, 16–28. doi:10.1016/j.ufug.2016.11.003.

Laidlaw, M. A. S., Filippelli, G. M., Brown, S., Paz-Ferreiro, J., Reichman, S. M., Netherway, P., Truskewycz, A., Ball, A. S., & Mielke, H. W. (2017). Case studies and evidence-based approaches to addressing urban soil lead contamination. Applied Geochemistry, 83, 14–30. doi:10.1016/j.apgeochem.2017.02.015.

Hasanov, V. H., Mammadova, S. Z., & Alieva, P. V. (2017). Ecological-genetically peculiarities and diagnostics of the cultivated urban soils in the Central Botanical Garden of NAS of Azerbaijan. Annals of Agrarian Science, 15(1), 75–79. doi:10.1016/j.aasci.2017.02.008.

Takahashi, T., Kanzawa, Y., Kobayashi, T., Zabowski, D., & Harrison, R. (2015). The effects of urbanization on chemical characteristics of forest soil in Tamagawa basin, Japan. Landscape and Ecological Engineering, 11(1), 139–145. doi:10.1007/s11355-014-0251-1.

Yang, L., Li, Y., Peng, K., & Wu, S. (2014). Nutrients and heavy metals in urban soils under different green space types in Anji, China. CATENA, 115, 39–46. doi:10.1016/j.catena.2013.11.008.

Gerasimova, M., Stroganova, M., Mozharova, N. and Prokofeva, T. (2003). Antropogennye pochvy: genezis, geografiya, rekultivaciya [Anthropogenic soils: genesis, geography, recultivation], Ojkumena, Smolensk, Russia.

Horodnii, M., Bykin, A., and Serdiuk, A. (2007). Ahrokhimichnyi analiz [Agrochemical analysis], Aristei, Kyiv, Ukraina.

Kupchyk, V., Ivanina, V., Nesterov, H., Tonkha, Li M. and Metiuz, H. (2010). Grunty Ukrainy: vlastyvosti, henezys, menedzhment rodiuchosti [Soils of Ukraine: properties, genesis, fertility management], in Kupchyk, V., (ed.), Kondor, Kiev, Ukraine.

Full Text: PDF

DOI: 10.28991/HIJ-SP2022-03-04


  • There are currently no refbacks.

Copyright (c) 2022 Nataliia Mironova, Olha Yefremova, Halyna Biletska, Ihor Bloshchynskyi, Ihor Koshelnyk, Serhii Sych, Maksym Filippov, Serhii Sinkevych, Vasyl Kravchuk