Innovative Blade Trailing Edge Flap Design Concept using Flexible Torsion Bar and Worm Drive

Kwangtae Ha

Abstract


In this paper, a simple but effective trailing edge flap system was proposed. This preliminary concept uses a more practical and stable actuation system, which consists of a motor-driven worm gear drive and a flexible torsion bar. The flexible torsion bar is designed to be easily twisted while keeping bending rigidity as a support, and the worm gear drive not only provides high torque to overcome aerodynamic forces on the flap area and the torsional rigidity of the support bar, but also acts as a brake to avoid instability due to the high torsional flexibility of the support bar. A preliminary level design study was performed to show the applicability of the new trailing edge flap system for wind turbine rotor blades or helicopter blades.

 

Doi: 10.28991/HIJ-2020-01-03-01

Full Text: PDF


Keywords


Wind Turbine Rotor Blade; Helicopter Blade; Torsion Bar; Flap.

References


Reichart, G. (1981). Helicopter Vibration Control A Survey. Vertica. 5(1), 1–20. Available online: https://dspace-erf.nlr.nl/xmlui/handle/20.500.11881/1813 (accessed on April 2020).

Loewy, R. G. (1984). Helicopter Vibrations: A Technological Perspective. Journal of the American Helicopter Society, 29(4), 4–30. doi:10.4050/jahs.29.4.

Barlas, T. K., & van Kuik, G. A. M. (2010). Review of state of the art in smart rotor control research for wind turbines. Progress in Aerospace Sciences, 46(1), 1–27. doi:10.1016/j.paerosci.2009.08.002.

Duvernier, M., Reithler, L., Guerrero, J. Y., and Rossi, R. (2000). Active Control System for a Rotor Blade Trailing-Edge Flap, Proceedings of the SPIE Smart Structures and Materials 2000 – Smart Structures and Integrated System Conference, March doi:10.1117/12.388848.

Madsen, H. A., Barlas, T., & Andersen, T. L. (2015). A morphing trailing edge flap system for wind turbine blades. In Proceedings of the 7th ECCOMAS thematic conference on smart structures and materials (SMART 2015), Azores, Portugal.

Straub, F. K., Ngo, H. T., Anand, V., & Domzalski, D. B. (2001). Development of a piezoelectric actuator for trailing edge flap control of full scale rotor blades. Smart materials and structures, 10(1), 25.

Bernhard, A. P. F., & Chopra, I. (2001). Analysis of a bending-torsion coupled actuator for a smart rotor with active blade tips. Smart Materials and Structures, 10(1), 35–52. doi:10.1088/0964-1726/10/1/304.

Ha, K., & Dancila, D. S. (2003). Characterization of Modified Star Shape Cross-Sectional Beam Configurations with Rotorcraft Applications. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. doi:10.2514/6.2003-1865.

Dancila, D., Cline, J., Goss, J., Ha, K. (2010). Composite Star-Beams as Pitch Compliant Tension-Torsion Support Mechanism for Active Windmill Blade Tips, 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 12-15. doi:10.2514/6.2010-2824.

Xie, W., Zeng, P., & Lei, L. (2015). A novel folding blade of wind turbine rotor for effective power control. Energy Conversion and Management, 101, 52–65. doi:10.1016/j.enconman.2015.05.037.

Fehlner, L. (1951). The design of control surfaces for hydrodynamic applications, Navy Department, The David W. Taylor Model Basin, Report C-358. Washington, D.C., United States. Available online: https://dome.mit.edu/bitstream/handle/ 1721.3/51150/DTMB_1951_C358.pdf?sequence=1&isAllowed=y (accessed on April 2020).

Liu, T.-R. (2019). Quadratic feedback–based equivalent sliding mode control of wind turbine blade section based on rigid trailing-edge flap. Measurement and Control, 52(1-2), 81–90. doi:10.1177/0020294018819548.

Kim, D.-H., Kwak, D.-I., & Song, Q. (2018). Demonstration of Active Vibration Control System on a Korean Utility Helicopter. International Journal of Aeronautical and Space Sciences, 20(1), 249–259. doi:10.1007/s42405-018-0106-3.

Wang, F., Lu, Y., Lee, H. P., & Ma, X. (2019). Vibration and noise attenuation performance of compounded periodic struts for helicopter gearbox system. Journal of Sound and Vibration, 458, 407–425. doi:10.1016/j.jsv.2019.06.037.


Full Text: PDF

DOI: 10.28991/HIJ-2020-01-03-01

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Kwangtae Ha