Interdisciplinary Studies of Jet Systems using Euler Methodology and Computational Fluid Dynamics Technologies

Yuri A. Sazonov, Mikhail A. Mokhov, Anton V. Bondarenko, Victoria V. Voronova, Khoren A. Tumanyan, Egor I. Konyushkov

Abstract


This study aims to conduct interdisciplinary research using computerized solutions to inventive problems in fluidics. The chosen direction of work relates to the scientific search for new opportunities for extremal control of the thrust vector within a complete geometric sphere (with the range of rotation angle change for the thrust vector being ±180° in any direction). This study assesses the prospects for the emergence of patentable innovative solutions for maneuverable unmanned vehicles. One of the most urgent tasks is to increase the process efficiency in forming fluid medium flow, expanding opportunities for controlling this flow parameter. The research uses an interdisciplinary approach with simulation modeling. The authors of the paper reveal new possibilities for using an ejector with two curved mixing chambers to create special jet units. Calculations (CFD) have confirmed the performance of the simulator ejector when controlling the thrust vector with 90° and 180° rotation. Manufacturing physical micromodels used additive technologies to allow simulation modeling under laboratory conditions. Using “data mining” methods, it was shown for the first time that, based on Euler’s ideas and methodology, it is possible to create a new methodology for teaching and solving inventive problems. The research results apply to power engineering and unmanned vehicles. Some results of scientific studies can be used to create special computer programs working together with artificial intelligence to create advanced techniques and technologies.

 

Doi: 10.28991/HIJ-2023-04-04-01

Full Text: PDF


Keywords


Interdisciplinary Research; Ejector; Nozzle Apparatus; Thrust Vector; Computer Simulation.

References


Sazonov, Y.A. (2012). Fundamentals of Calculating and Designing Pumping and Ejector Installations. Gubkin Russian State University of Oil and Gas, Moscow, Russia.

Altshuller G.S. (2011). Find an Idea: Introduction to TRIZ - Theory of Inventive Problem Solving. Alpina Publisher, Moscow, Russia.

Raskin, N.M. (1958). Euler’s Questions of Technique. Leonhard Euler. In: Collection of articles in honor of the 250th anniversary of the birth, presented to the Academy of Sciences of the USSR, 499-556, Publishing House of the Academy of Sciences of the USSR, Moscow, Russia.

Bistafa, S. R. (2021). Investigation of a water turbine built according to Euler's proposals (1754). arXiv preprint arXiv:2108.12048. doi:10.48550/arXiv.2108.12048.

Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Development and Prototyping of Jet Systems for Advanced Turbomachinery with Mesh Rotor. Emerging Science Journal, 5(5), 775–801. doi:10.28991/esj-2021-01311

Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2022). Designing Mesh Turbomachinery with the Development of Euler’s Ideas and Investigating Flow Distribution Characteristics. Civil Engineering Journal, 8(11), 2598–2627. doi:10.28991/cej-2022-08-11-017

Kurdyumov, C., & Knyazeva E. (2023). The Future and its Horizons: Synergetic Methodology in Forecasting, Synergetics and Scientific Forecasting. Available online: https://spkurdyumov.ru/category/forecasting/ (accessed on May 2023).

Voronov, Y.P. (2010). Foresight as a Tool. Institute of Economics and Organization of Industrial Production of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.

Taherinezhad, M., & Ramirez-Serrano, A. (2023). An Enhanced Incremental Nonlinear Dynamic Inversion Control Strategy for Advanced Unmanned Aircraft Systems. Aerospace, 10(10), 843. doi:10.3390/aerospace10100843

Zhu, D., Chen, Z., Xie, X., & Chen, J. (2023). Discretization Method to Improve the Efficiency of Complex Airspace Operation. Aerospace, 10(9), 780. doi:10.3390/aerospace10090780

Wu, J., Wang, H., Li, S., & Liu, S. (2023). Distributed Adaptive Path-Following Control for Distance-Based Formation of Fixed-Wing UAVs under Input Saturation. Aerospace, 10(9), 768. doi:10.3390/aerospace10090768

Si, X., Xu, G., Ke, M., Zhang, H., Tong, K., & Qi, F. (2023). Relative Localization within a Quadcopter Unmanned Aerial Vehicle Swarm Based on Airborne Monocular Vision. Drones, 7(10), 612. doi:10.3390/drones7100612

Wu, X., Zhang, M., Wang, X., Zheng, Y., & Yu, H. (2023). Hierarchical Task Assignment for Multi-UAV System in Large-Scale Group-to-Group Interception Scenarios. Drones, 7(9), 560. doi:10.3390/drones7090560

Fitrikananda, B. P., Jenie, Y. I., Sasongko, R. A., & Muhammad, H. (2023). Risk Assessment Method for UAV’s Sense and Avoid System Based on Multi-Parameter Quantification and Monte Carlo Simulation. Aerospace, 10(9), 781. doi:10.3390/aerospace10090781

Bhamu, N., Verma, H., Dixit, A., Bollard, B., & Sarangi, S. R. (2023). SmrtSwarm: A Novel Swarming Model for Real-World Environments. Drones, 7(9), 573. doi:10.3390/drones7090573

Li, J., Shen, D., Yu, F., & Zhang, R. (2023). Air Channel Planning Based on Improved Deep Q-Learning and Artificial Potential Fields. Aerospace, 10(9), 758. doi:10.3390/aerospace10090758

An, W., Lin, T., & Zhang, P. (2023). An Autonomous Soaring for Small Drones Using the Extended Kalman Filter Thermal Updraft Center Prediction Method Based on Ordinary Least Squares. Drones, 7(10), 603. doi:10.3390/drones7100603

Xie, A., Yan, X., Liang, W., Zhu, S., & Chen, Z. (2023). Large-Sized Multirotor Design: Accurate Modeling with Aerodynamics and Optimization for Rotor Tilt Angle. Drones, 7(10), 614. doi:10.3390/drones7100614

Baspinar, B. (2023). Robust Controller Design for a Generic Helicopter Model: An AI-Aided Application for Terrain Avoidance. Aerospace, 10(9), 757. doi:10.3390/aerospace10090757

Tan, J., Ye, H., Xu, C., He, H., & Liao, X. (2023). SkyroadAR: An Augmented Reality System for UAVs Low-Altitude Public Air Route Visualization. Drones, 7(9), 587. doi:10.3390/drones7090587

Ma, Z., Wang, Z., Ma, A., Liu, Y., & Niu, Y. (2023). A Low-Altitude Obstacle Avoidance Method for UAVs Based on Polyhedral Flight Corridor. Drones, 7(9), 588. doi:10.3390/drones7090588

Kunze, J., & Paull, A. (2023). Preliminary Analysis of the Performance of an Electric Supersonic Propeller. Aerospace, 10(9), 803. doi:10.3390/aerospace10090803

Pilakkadan, J. S., Ajaj, R. M., Haider, Z., & Amoozgar, M. (2023). On the Aeroelasticity of a Cantilever Wing Equipped with the Spanwise Morphing Trailing Edge Concept. Aerospace, 10(9), 809. doi:10.3390/aerospace10090809

Xu, T., Cheng, Q., Lin, C., Yu, Q., & Hu, X. (2023). Study on Flow Characteristics of Francis Turbine Based on Large-Eddy Simulation. Water, 15(19), 3372. doi:10.3390/w15193372

Zhang, T., He, G., Guang, W., Lu, J., Song, X., Zhu, D., & Wang, Z. (2023). Investigation of the Internal Flow in a Francis Turbine for Comparing the Flow Noise of Different Operation Conditions. Water, 15(19), 3461. doi:10.3390/w15193461

Cheng, C., Li, X., Xie, L., & Li, L. (2023). A Unmanned Aerial Vehicle (UAV)/Unmanned Ground Vehicle (UGV) Dynamic Autonomous Docking Scheme in GPS-Denied Environments. Drones, 7(10), 613. doi:10.3390/drones7100613

Kumar, P., Kashyap, Y., Castelino, R. V., Karthikeyan, A., Sharma K., M., Karmakar, D., & Kosmopoulos, P. (2023). Laboratory-Scale Airborne Wind Energy Conversion Emulator Using OPAL-RT Real-Time Simulator. Energies, 16(19), 6804. doi:10.3390/en16196804

Zhang, Y., Dong, J., Song, S., Pan, X., He, N., & Lu, M. (2023). Numerical Investigation on the Effect of Section Width on the Performance of Air Ejector with Rectangular Section. Entropy, 25(1), 179. doi:10.3390/e25010179

Fu, J., Liu, Z., Yang, X., Jin, S., & Ye, J. (2023). Limiting Performance of the Ejector Refrigeration Cycle with Pure Working Fluids. Entropy, 25(2), 223. doi:10.3390/e25020223

Bolobov, V., Martynenko, Y., & Yurtaev, S. (2023). Experimental Determination of the Flow Coefficient for a Constrictor Nozzle with a Critical Outflow of Gas. Fluids, 8(6), 169. doi:10.3390/fluids8060169

Yang, J., Zhang, X., Wang, L., Du, Y., & Han, Y. (2023). Performance Analysis of Transcritical CO2 Quasi-Secondary Compression Cycle with Ejector Based on Pinch Point. Designs, 7(4), 89. doi:10.3390/designs7040089

Hammemi, R., Elakhdar, M., Tashtoush, B., & Nehdi, E. (2023). Multi-Objective Optimization of a Solar Combined Power Generation and Multi-Cooling System Using CO2 as a Refrigerant. Energies, 16(4), 1585. doi:10.3390/en16041585

Bencharif, M., Croquer, S., Fang, Y., Poncet, S., Nesreddine, H., & Zid, S. (2022). Prediction of Performance and Geometrical Parameters of Single-Phase Ejectors Using Artificial Neural Networks. Thermo, 3(1), 1–20. doi:10.3390/thermo3010001

Chen, H., Wang, Y., & Zhang, H. (2023). Multi-Objective Optimization Design of Adaptive Cycle Engine with Serpentine 2-D Exhaust System Based on Infrared Stealth. Aerospace, 10(10), 858. doi:10.3390/aerospace10100858

Yan, J., Jiang, J., & Wang, Z. (2022). Optimization on Secondary Flow and Auxiliary Entrainment Inlets of an Ejector by Using Three-Dimensional Numerical Study. Entropy, 24(9), 1241. doi:10.3390/e24091241

Zhang, J., Liu, Y., Guo, Y., Zhang, J., & Ma, S. (2023). Numerical Study on Flow and Noise Characteristics of High-Temperature and High-Pressure Steam Ejector. Energies, 16(10), 4158. doi:10.3390/en16104158

Han, Y., Wang, X., Li, A., A. Elbarghthi, A. F., & Wen, C. (2022). Optimum Efficiency of a Steam Ejector for Fire Suppression Based on the Variable Mixing Section Diameter. Entropy, 24(11), 1625. doi:10.3390/e24111625

Kartas, S.S. (2021). Investigation of a curved ejector. Dissertation, Candidate of Technical Sciences, Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia.

Bayles, W.H., & Nash, B.C. (1962). US Patent No. 3,064,878. Method and apparatus for high performance evacuation system, Date of Patent 20.11.1962. Available online: https://www.freepatentsonline.com/3064878.pdf (accessed on May 2023).

Volker, M., & Sausner, A. (2014). US Patent No. 10,072,674. Suction jet pump, Date of Patent 05.03.2014. Available online: https://www.freepatentsonline.com/10072674.pdf (accessed on May 2023).

Yan, J., Shu, Y., Jiang, J., & Wen, H. (2022). Optimization of Two-Phase Ejector Mixing Chamber Length under Varied Liquid Volume Fraction. Entropy, 25(1), 7. doi:10.3390/e25010007

Wang, C., & Wang, L. (2022). Investigation of Fluid Characteristic and Performance of an Ejector by a Wet Steam Model. Entropy, 25(1), 85. doi:10.3390/e25010085

Song, S., Ren, Q., Tang, M., Shi, J., & Wang, J. (2023). A Study on Ultra-Low-Pressure Ratio Technology on the Basis of 3D-Printed Propellant for a Solid Rocket Motor. Aerospace, 10(10), 862. doi:10.3390/aerospace10100862

Zaharia, S. M., Pascariu, I. S., Chicos, L. A., Buican, G. R., Pop, M. A., Lancea, C., & Stamate, V. M. (2023). Material Extrusion Additive Manufacturing of the Composite UAV Used for Search-and-Rescue Missions. Drones, 7(10), 602. doi:10.3390/drones7100602

Yan, J., Shu, Y., & Wang, C. (2022). Effect of Back Pressure on Performances and Key Geometries of the Second Stage in a Highly Coupled Two-Stage Ejector. Entropy, 24(12), 1847. doi:10.3390/e24121847

Zheng, J., Hou, Y., Tian, Z., Jiang, H., & Chen, W. (2022). Simulation Analysis of Ejector Optimization for High Mass Entrainment under the Influence of Multiple Structural Parameters. Energies, 15(19), 7058. doi:10.3390/en15197058

Yu, M., Wang, C., Wang, L., & Zhao, H. (2022). Optimization Design and Performance Evaluation of R1234yf Ejectors for Ejector-Based Refrigeration Systems. Entropy, 24(11), 1632. doi:10.3390/e24111632

Zheng, L., Zhang, Y., Hao, L., Lian, H., Deng, J., & Lu, W. (2022). Modelling, Optimization, and Experimental Studies of Refrigeration CO2 Ejectors: A Review. Mathematics, 10(22), 4325. doi:10.3390/math10224325

Yan, J., Li, R., & Wang, C. (2022). Optimization of Three Key Geometries of a Steam Ejector under Varied Primary Nozzle Geometries. Entropy, 25(1), 15. doi:10.3390/e25010015

Yan, J., & Wang, C. (2022). Experimental Study on a Multi-Evaporator Refrigeration System Equipped with EEV-Based Ejector. Entropy, 24(9), 1302. doi:10.3390/e24091302

Friedmann, G. (1952). US Patent 2,623,474. Injection Mixer, Patented 30.12.1952. Available online: https://www.freepatentsonline.com/2623474.pdf (accessed on May 2023).

Wheatley, M.J. (1997). UK Patent Application, GB No. 2310005. Apparatus for Energy Transfer, London, United Kingdom.

Nunan, K. M., Cooper, R., West, L. K. (2023). Patent for invention of the Russian Federation No. 2 803 533. A nozzle assembly, a rocket containing such an assembly, and a method of deflecting a thrust vector using said assembly, Moscow, Russia.

Abdrassilov, A., Orynbassarova, Y., & Tvaronaviciene, M. (2023). Exploring Environmental Factors for the Sports Clusters Development. Journal of Environmental Management and Tourism, 14(3), 799-810. doi:10.14505/jemt.v14.3(67).19

Bachurin, A.B. (2014). Hydroavtomatics of Adjustable Propulsion Unit (Development and Research). Dissertation, Candidate of Technical Sciences, Ufa State Aviation Technical University, Ufa, Russia

Ren, J., Zhao, H., Wang, M., Miao, C., Wu, Y., & Li, Q. (2022). Design and Investigation of a Dynamic Auto-Adjusting Ejector for the MED-TVC Desalination System Driven by Solar Energy. Entropy, 24(12), 1815. doi:10.3390/e24121815

Cha, J. (2023). Numerical Simulation of Chemical Propulsion Systems: Survey and Fundamental Mathematical Modeling Approach. Aerospace, 10(10), 839. doi:10.3390/aerospace10100839

El Hassan, M. (2022). System COP of Ejector-Based Ground-Source Heat Pumps. Energies, 15(22), 8509. doi:10.3390/en15228509.

Bukharin, N., & El Hassan, M. (2023). Numerical and Experimental Investigation of Supersonic Binary Fluid Ejector Performance. Fluids, 8(7), 197. doi:10.3390/fluids8070197

Singmai, W., Onthong, K., & Thongtip, T. (2023). Experimental Investigation of the Improvement Potential of a Heat Pump Equipped with a Two-Phase Ejector. Energies, 16(16), 5889. doi:10.3390/en16165889

Oleinik, A., Kapitanov, A., Alexandrov, I., & Tatarkanov, A. (2020). Calculation methodology for geometrical characteristics of the forming tool for rib cold rolling. Journal of Applied Engineering Science, 18(2), 292–300. doi:10.5937/jaes18-25211

Tashtoush, B., Songa, I., & Morosuk, T. (2022). Exergoeconomic Analysis of a Variable Area Solar Ejector Refrigeration System under Hot Climatic Conditions. Energies, 15(24), 9540. doi:10.3390/en15249540

Lysak, I. A., Lysak, G. V., Konyukhov, V. Y., Stupina, A. A., Gozbenko, V. E., & Yamshchikov, A. S. (2023). Efficiency Optimization of an Annular-Nozzle Air Ejector under the Influence of Structural and Operating Parameters. Mathematics, 11(14), 3039. doi:10.3390/math11143039

Balalaev, A. N. (2004). Method of Indirect Thermodynamic Analogy for the Calculation of Heat and Mass Transfer Processes. Dissertation, Doctor of Technical Sciences, Moscow State University of Railway Engineering (MIIT), Moscow, Russia.

Dukhanov, A.V. (2010). Simulation Modeling of Complex Systems: A Course of Lectures. Publishing House of Vladimir State University, Vladimir, Russia.


Full Text: PDF

DOI: 10.28991/HIJ-2023-04-04-01

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Yuri A. Sazonov, Mikhail A. Mokhov, Anton V. Bondarenko, Victoria V. Voronova, Khoren A. Tumanyan, Egor I. Konyushkov