Enhancing Trustworthiness and Interoperability of Electronic Voting Systems through Blockchain Bridges

Blerim Rexha, Vehbi Neziri, Ramadan Dervishi

Abstract


Decentralized applications leveraging blockchain technology are gaining widespread adoption within the decentralized applications ecosystem. Interoperability, a fundamental concept facilitating seamless data and processing power exchange across diverse blockchain networks, is paramount in this context. The primary objective of this paper is to explore the transformative potential of "blockchain bridges" in facilitating secure and transparent electronic voting processes across multiple blockchain networks. The study employs a comprehensive analysis of various approaches, including atomic exchanges, sidechains, cross-chain bridges, token wrappers, and interledger protocols. The selection of a specific method is guided by the unique requirements and privacy considerations of the electronic voting use case. The application of two distinct blockchains serves as a practical demonstration, illustrating the principles of blockchain bridges in real-world scenarios. The research reveals that blockchain bridges not only streamline the exchange of data between diverse blockchain networks but also establish a dual decentralization paradigm. This paradigm enables the creation of openly maintained, purpose-specific, decentralized ledgers for electronic voting. The integration of blockchain bridges significantly reduces the risk of fraud, instilling greater confidence in the accuracy of election results. Thus, by presenting a comprehensive array of approaches and emphasizing their practical application, this research contributes to advancing the understanding and implementation of blockchain technology in the critical domain of electronic voting.

 

Doi: 10.28991/HIJ-2023-04-04-04

Full Text: PDF


Keywords


Blockchain; Bridge; e-Voting; Trustworthiness; Interoperability.

References


Neziri, V., Shabani, I., Dervishi, R., & Rexha, B. (2022). Assuring Anonymity and Privacy in Electronic Voting with Distributed Technologies Based on Blockchain. Applied Sciences (Switzerland), 12(11), 5477. doi:10.3390/app12115477.

Han, P., Yan, Z., Ding, W., Fei, S., & Wan, Z. (2023). A Survey on Cross-chain Technologies. Distributed Ledger Technologies: Research and Practice, 2(2), 1–30. doi:10.1145/3573896.

Belchior, R., Süßenguth, J., Feng, Q., Hardjono, T., Vasconcelos, A., & Correia, M. (2023). A Brief History of Blockchain Interoperability, Techrxiv, 1-18. doi:10.36227/techrxiv.23418677.

Balint, K. (2023). Creation of a Unified University Blockchain for the Purpose of Storing the University’s Teaching Mate Rials. SACI 2023 - IEEE 17th International Symposium on Applied Computational Intelligence and Informatics, Proceedings, 159–162. doi:10.1109/SACI58269.2023.10158561.

Kabashi, F., Neziri, V., Snopce, H., Luma, A., Aliu, A., & Shkurti, L. (2023). The possibility of blockchain application in Higher Education. In 12th Mediterranean Conference on Embedded Computing, MECO 2023, Budva, Montenegro. doi:10.1109/MECO58584.2023.10154919.

Villarreal, E. R. D., Garcia-Alonso, J., Moguel, E., & Alegria, J. A. H. (2023). Blockchain for Healthcare Management Systems: A Survey on Interoperability and Security. IEEE Access, 11, 5629–5652. doi:10.1109/ACCESS.2023.3236505.

Lee, S. S., Murashkin, A., Derka, M., & Gorzny, J. (2023). SoK: Not Quite Water under the Bridge: Review of Cross-Chain Bridge Hacks. 2023 IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2023, Dubai, United Arab Emirates. doi:10.1109/ICBC56567.2023.10174993.

Li, L., Wu, J., & Cui, W. (2023). A review of blockchain cross‐chain technology. IET Blockchain, 3(3), 149–158. doi:10.1049/blc2.12032.

Wegner, P. (1996). Interoperability. ACM Computing Surveys, 28(1), 285–287. doi:10.1145/234313.234424.

Hardjono, T., Lipton, A., & Pentland, A. (2020). Toward an Interoperability Architecture for Blockchain Autonomous Systems. IEEE Transactions on Engineering Management, 67(4), 1298–1309. doi:10.1109/TEM.2019.2920154.

Yaga, D., Mell, P., Roby, N., & Scarfone, K. (2019). Blockchain Technology Overview, National Institute of Standards and Technology, NISTIR 8202. doi:10.6028/NIST.IR.8202.

Pillai, B., Biswas, K., Hou, Z., & Muthukkumarasamy, V. (2022). Cross-Blockchain Technology: Integration Framework and Security Assumptions. IEEE Access, 10, 41239–41259. doi:10.1109/ACCESS.2022.3167172.

Belchior, R., Vasconcelos, A., Guerreiro, S., & Correia, M. (2022). A Survey on Blockchain Interoperability: Past, Present, and Future Trends. ACM Computing Surveys, 54(8), 1–41. doi:10.1145/3471140.

Abebe, E., Behl, D., Govindarajan, C., Hu, Y., Karunamoorthy, D., Novotny, P., Pandit, V., Ramakrishna, V., & Vecchiola, C. (2019). Enabling Enterprise Blockchain Interoperability with Trusted Data Transfer (Industry Track). Middleware Industry 2019 - Proceedings of the 2019 20th International Middleware Conference Industrial Track, Part of Middleware 2019, 29–35. doi:10.1145/3366626.3368129.

Anthony Jnr, B. (2023). Enhancing blockchain interoperability and intraoperability capabilities in collaborative enterprise-a standardized architecture perspective. Enterprise Information Systems, 2296647. doi:10.1080/17517575.2023.2296647.

Tsepeleva, R., & Korkhov, V. (2021). Implementation of the Cross-Blockchain Interacting Protocol. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 12952 LNCS, 42–55. doi:10.1007/978-3-030-86973-1_4.

Tsepeleva, R., & Korkhov, V. (2022). Building DeFi Applications Using Cross-Blockchain Interaction on the Wish Swap Platform. Computers, 11(6), 99. doi:10.3390/computers11060099.

Robinson, P., Ramesh, R., & Johnson, S. (2022). Atomic Crosschain Transactions for Ethereum Private Sidechains. Blockchain: Research and Applications, 3(1), 100030. doi:10.1016/j.bcra.2021.100030.

Dcunha, S., Patel, S., Sawant, S., Kulkarni, V., & Shirole, M. (2021). Blockchain Interoperability Using Hash Time Locks. Lecture Notes in Electrical Engineering, 748, 475–487. doi:10.1007/978-981-16-0275-7_39.

McCorry, P., Möser, M., Shahandasti, S. F., & Hao, F. (2016). Towards Bitcoin payment networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, Volume 9722, 57–76. doi:10.1007/978-3-319-40253-6_4.

Garoffolo, A., Kaidalov, D., & Oliynykov, R. (2020). Zendoo: A ZK-SNARK verifiable cross-chain transfer protocol enabling decoupled and decentralized sidechains. Proceedings - International Conference on Distributed Computing Systems, 2020-November, 1257–1262. doi:10.1109/ICDCS47774.2020.00161.

Centobelli, P., Cerchione, R., Vecchio, P. Del, Oropallo, E., & Secundo, G. (2022). Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Information and Management, 59(7), 103508. doi:10.1016/j.im.2021.103508.

Thyagarajan, S. A. K., Malavolta, G., & Moreno-Sanchez, P. (2022). Universal Atomic Swaps: Secure Exchange of Coins across All Blockchains. Proceedings - IEEE Symposium on Security and Privacy, 2022-May, 1299–1316, San Francisco, United States. doi:10.1109/SP46214.2022.9833731.

Caldarelli, G. (2022). Wrapping trust for interoperability: A preliminary study of wrapped tokens. Information (Switzerland), 13(1), 6. doi:10.3390/info13010006.

Kosba, A., Miller, A., Shi, E., Wen, Z., & Papamanthou, C. (2016). Hawk: The Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts. Proceedings - 2016 IEEE Symposium on Security and Privacy, SP 2016, 839–858. doi:10.1109/SP.2016.55.

Liu, Y., Shan, G., Liu, Y., Alghamdi, A., Alam, I., & Biswas, S. (2022). Blockchain Bridges Critical National Infrastructures: E-Healthcare Data Migration Perspective. IEEE Access, 10, 28509–28519. doi:10.1109/ACCESS.2022.3156591.

Schulte, S., Sigwart, M., Frauenthaler, P., & Borkowski, M. (2019). Towards Blockchain Interoperability. Lecture Notes in Business Information Processing, Volume 361, 3–10. doi:10.1007/978-3-030-30429-4_1.

Jin, H., Dai, X., & Xiao, J. (2018). Towards a novel architecture for enabling interoperability amongst multiple blockchains. Proceedings - International Conference on Distributed Computing Systems, 2018-July, 1203–1211, Vienna, Austria. doi:10.1109/ICDCS.2018.00120.

Bernal Bernabe, J., Canovas, J. L., Hernandez-Ramos, J. L., Torres Moreno, R., & Skarmeta, A. (2019). Privacy-Preserving Solutions for Blockchain: Review and Challenges. IEEE Access, 7, 164908–164940. doi:10.1109/ACCESS.2019.2950872.

Dasgupta, D., Shrein, J. M., & Gupta, K. D. (2019). A survey of blockchain from security perspective. Journal of Banking and Financial Technology, 3(1), 1–17. doi:10.1007/s42786-018-00002-6.

de Haro-Olmo, F. J., Varela-Vaca, Á. J., & Álvarez-Bermejo, J. A. (2020). Blockchain from the perspective of privacy and anonymisation: A systematic literature review. Sensors (Switzerland), 20(24), 1–21. doi:10.3390/s20247171.

Li, X., Jiang, P., Chen, T., Luo, X., & Wen, Q. (2020). A survey on the security of blockchain systems. Future Generation Computer Systems, 107, 841–853. doi:10.1016/j.future.2017.08.020.

Talib, M. A., Abbas, S., Nasir, Q., Dakalbab, F., Mokhamed, T., Hassan, K., & Senjab, K. (2021). Interoperability among Heterogeneous Blockchains: A Systematic Literature Review. In EAI/Springer Innovations in Communication and Computing, 135–166. doi:10.1007/978-3-030-75107-4_6.

Puri, V., Priyadarshini, I., Kumar, R., & Kim, L. C. (2020). Blockchain meets IIoT: An architecture for privacy preservation and security in IIoT. 2020 International Conference on Computer Science, Engineering and Applications, ICCSEA 2020. doi:10.1109/ICCSEA49143.2020.9132860.

Neziri, V., Dervishi, R., & Rexha, B. (2021). Survey on Using Blockchain Technologies in Electronic Voting Systems. Proceedings - 25th International Conference on Circuits, Systems, Communications and Computers, CSCC 2021, 61–65. doi:10.1109/CSCC53858.2021.00019.

Jourenko, M., Larangeira, M., Kurazumi, K., & Tanaka, K. (2019). SoK: A Taxonomy for Layer-2 Scalability Related Protocols for Cryptocurrencies. IACR Cryptology EPrint Archive, 1(2019/352), 1–19.

Gangwal, A., Gangavalli, H. R., & Thirupathi, A. (2023). A survey of Layer-two blockchain protocols. Journal of Network and Computer Applications, 209, 103539. doi:10.1016/j.jnca.2022.103539.

Ou, W., Huang, S., Zheng, J., Zhang, Q., Zeng, G., & Han, W. (2022). An overview on cross-chain: Mechanism, platforms, challenges and advances. Computer Networks, 218, 109378. doi:10.1016/j.comnet.2022.109378.

Krishna, S. P., & Singh, P. (2023). Security Challenges in Building Blockchains Bridges and Countermeasures. Evergreen, 10(3), 1558–1569. doi:10.5109/7151703.

Wood, G. (2016). Polkadot: Vision for a heterogeneous multi-chain framework. White Paper, 21(2327), 4662. Available online: https://assets.polkadot.network/Polkadot-whitepaper.pdf (accessed on June 2023).

Mohanty, D., Anand, D., Aljahdali, H. M., & Villar, S. G. (2022). Blockchain Interoperability: Towards a Sustainable Payment System. Sustainability (Switzerland), 14(2), 913. doi:10.3390/su14020913.


Full Text: PDF

DOI: 10.28991/HIJ-2023-04-04-04

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Vehbi Neziri