Improving the Air Quality Monitoring Framework Using Artificial Intelligence for Environmentally Conscious Development

Danny Manongga, Untung Rahardja, Irwan Sembiring, Qurotul Aini, Abdul Wahab

Abstract


This study aims to significantly improve air quality monitoring through the innovative application of Artificial Intelligence (AI). Introducing the Artificial Intelligence Kualitas Udara (AIKU) model, this research offers a novel approach by integrating advanced machine learning algorithms with environmental sensors to predict air quality in real-time more accurately than traditional methods. The novelty of the AIKU model lies in its sophisticated data analytics framework, which processes high-frequency environmental data to assess air quality changes dynamically. The technique employs calibrating and deploying the AIKU model across various urban and suburban settings and analyzing its performance against conventional monitoring systems such as the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). The results demonstrate that AIKU significantly outperforms these traditional systems in both accuracy and speed of response, highlighting its effectiveness in real-time environmental monitoring. Furthermore, the AIKU model's scalability and adaptability are tested, showing promising potential for application in densely populated urban areas and less populated rural settings. This research contributes to environmental monitoring by demonstrating how AI can transform traditional methodologies into more effective, scalable, and intelligent ecological management systems. This research provides substantial evidence that the AIKU model can serve as a powerful tool for sustainable and smart development worldwide, enhancing the ability of governments and organizations to respond to environmental challenges promptly and effectively.

 

Doi: 10.28991/HIJ-2024-05-03-017

Full Text: PDF


Keywords


Artificial Intelligence (AI); Air Quality; Middleware; AIKU; Environmentally Conscious.

References


Dethier, J. J. (2017). Trash, cities, and politics: Urban environmental problems in Indonesia. Indonesia, 2017(103), 73–90. doi:10.5728/indonesia.103.0073.

Pathak, S., Chaturvedi, A., & Laikram, S. (2023). Human Rights amongst COVID-19: CAT Convention. Emerging Science Journal, 7(6), 2050-2079. doi:10.28991/ESJ-2023-07-06-012.

Kurdthongmee, W., Suwannarat, K., & Wattanapanich, C. (2023). A Framework to Estimate the Key Point Within an Object Based on a Deep Learning Object Detection. HighTech and Innovation Journal, 4(1), 106–121. doi:10.28991/HIJ-2023-04-01-08.

Kurdthongmee, W. (2023). Comprehensive Evaluation of Deep Neural Network Architectures for Parawood Pith Estimation. HighTech and Innovation Journal, 4(3), 543–559. doi:10.28991/HIJ-2023-04-03-06.

Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., … Williams, R. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International, 116, 286–299. doi:10.1016/j.envint.2018.04.018.

Concas, F., Mineraud, J., Lagerspetz, E., Varjonen, S., Liu, X., Puolamäki, K., Nurmi, P., & Tarkoma, S. (2021). Low-Cost Outdoor Air Quality Monitoring and Sensor Calibration. ACM Transactions on Sensor Networks, 17(2), 1–44. doi:10.1145/3446005.

Narayana, M. V., Jalihal, D., & Shiva Nagendra, S. M. (2022). Establishing A Sustainable Low-Cost Air Quality Monitoring Setup: A Survey of the State-of-the-Art. Sensors, 22(1), 394. doi:10.3390/s22010394.

Zhao, J., Zhu, H., & Liu, B. (2023). Deep Learning: A Study of Pattern Recognition for Personalized Clothing. HighTech and Innovation Journal, 4(3), 505–514. doi:10.28991/HIJ-2023-04-03-03.

Ma, E., Lai, J., Wang, L., Wang, K., Xu, S., Li, C., & Guo, C. (2021). Review of cutting-edge sensing technologies for urban underground construction. Measurement: Journal of the International Measurement Confederation, 167, 108289. doi:10.1016/j.measurement.2020.108289.

Ullo, S. L., & Sinha, G. R. (2020). Advances in smart environment monitoring systems using IOT and sensors. Sensors (Switzerland), 20(11), 3113. doi:10.3390/s20113113.

Allioui, H., & Mourdi, Y. (2023). Unleashing the Potential of AI: Investigating Cutting-Edge Technologies That Are Transforming Businesses. International Journal of Computer Engineering and Data Science, 3(2), 2737–8543.

Adesipo, A., Fadeyi, O., Kuca, K., Krejcar, O., Maresova, P., Selamat, A., & Adenola, M. (2020). Smart and climate-smart agricultural trends as core aspects of smart village functions. Sensors (Switzerland), 20(21), 1–22. doi:10.3390/s20215977.

Amutha, J., Sharma, S., & Sharma, S. K. (2021). Strategies based on various aspects of clustering in wireless sensor networks using classical, optimization and machine learning techniques: Review, taxonomy, research findings, challenges and future directions. Computer Science Review, 40, 100376. doi:10.1016/j.cosrev.2021.100376.

Ding, Q., Zhu, R., Liu, H., & Ma, M. (2021). An overview of machine learning-based energy-efficient routing algorithms in wireless sensor networks. Electronics (Switzerland), 10(13), 1539. doi:10.3390/electronics10131539.

Jordan, K., & Kristjánsson, K. (2017). Sustainability, virtue ethics, and the virtue of harmony with nature. Environmental Education Research, 23(9), 1205–1229. doi:10.1080/13504622.2016.1157681.

Rashed, A. H., & Shah, A. (2021). The role of private sector in the implementation of sustainable development goals. Environment, Development and Sustainability, 23(3), 2931–2948. doi:10.1007/s10668-020-00718-w.

George, R. A., Siti-Nabiha, A. K., Jalaludin, D., & Abdalla, Y. A. (2016). Barriers to and enablers of sustainability integration in the performance management systems of an oil and gas company. Journal of Cleaner Production, 136, 197–212. doi:10.1016/j.jclepro.2016.01.097.

Mandava, T., Chen, S., Isafiade, O., & Bagula, A. (2018). An IoT middleware for air pollution monitoring in smart cities: a situation recognition model. Proceedings of the IST Africa 2018 Conference, Gabarone, Botswana, 9–11.

Bhandari, G. P., Lyth, A., Shalaginov, A., & Gronli, T. M. (2022). Artificial Intelligence Enabled Middleware for Distributed Cyberattacks Detection in IoT-based Smart Environments. Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022, 3023–3032. doi:10.1109/BigData55660.2022.10020531.

Samee, I. U., Jilani, M. T., & Wahab, H. G. A. (2019). An Application of IoT and Machine Learning to Air Pollution Monitoring in Smart Cities. 2019 4th International Conference on Emerging Trends in Engineering, Sciences and Technology, ICEEST 2019, 1–6. doi:10.1109/ICEEST48626.2019.8981707.

Fu, L., Li, J., & Chen, Y. (2023). An innovative decision-making method for air quality monitoring based on big data-assisted artificial intelligence technique. Journal of Innovation and Knowledge, 8(2), 100294. doi:10.1016/j.jik.2022.100294.

Katsiri, E. (2021). Developing reliable air quality monitoring devices with low cost sensors: method and lessons learned. International Journal of Environmental Science, 6, 425-444.

Varade, H. P., Bhangale, S. C., Thorat, S. R., Khatkale, P. B., Sharma, S. K., & William, P. (2023). Framework of Air Pollution Assessment in Smart Cities using IoT with Machine Learning Approach. Proceedings of the 2nd International Conference on Applied Artificial Intelligence and Computing, ICAAIC 2023, 1436–1441. doi:10.1109/ICAAIC56838.2023.10140834.

Bansal, S., & Kumar, D. (2020). IoT Ecosystem: A Survey on Devices, Gateways, Operating Systems, Middleware and Communication. International Journal of Wireless Information Networks, 27(3), 340–364. doi:10.1007/s10776-020-00483-7.

Fridelin, Y. Y., Ulil Albaab, M. R., Anom Besari, A. R., Sukaridhoto, S., & Tjahjono, A. (2018). Implementation of microservice architectures on SEMAR extension for air quality monitoring. International Electronics Symposium on Knowledge Creation and Intelligent Computing, IES-KCIC 2018 - Proceedings, 218–224. doi:10.1109/KCIC.2018.8628575.

Neo, E. X., Hasikin, K., Lai, K. W., Mokhtar, M. I., Azizan, M. M., Hizaddin, H. F., Razak, S. A., & Yanto. (2023). Artificial intelligence-assisted air quality monitoring for smart city management. PeerJ Computer Science, 9, 1306. doi:10.7717/peerj-cs.1306.

Choi, L. K., Panjaitan, A. S., & Apriliasari, D. (2022). The Effectiveness of Business Intelligence Management Implementation in Industry 4.0. Startupreneur Business Digital (SABDA Journal), 1(2), 115–125. doi:10.34306/sabda.v1i2.106.

Almalawi, A., Alsolami, F., Khan, A. I., Alkhathlan, A., Fahad, A., Irshad, K., Qaiyum, S., & Alfakeeh, A. S. (2022). An IoT based system for magnify air pollution monitoring and prognosis using hybrid artificial intelligence technique. Environmental Research, 206, 112576. doi:10.1016/j.envres.2021.112576.

Zhang, D., Zhou, X., Zhang, J., Lan, Y., Xu, C., & Liang, D. (2018). Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging. PLoS ONE, 13(5), 187470. doi:10.1371/journal.pone.0187470.

Yao, H., Qin, R., & Chen, X. (2019). Unmanned aerial vehicle for remote sensing applications - A review. Remote Sensing, 11(12), 1443. doi:10.3390/rs11121443.

Wang, Y., Wang, L., Wang, H., & Li, P. (2019). End-to-End Image Super-Resolution via Deep and Shallow Convolutional Networks. IEEE Access, 7, 31959–31970. doi:10.1109/ACCESS.2019.2903582.

He, T., & Li, X. (2019). Image quality recognition technology based on deep learning. Journal of Visual Communication and Image Representation, 65, 102654. doi:10.1016/j.jvcir.2019.102654.

Bhargava, A., & Bansal, A. (2021). Fruits and vegetables quality evaluation using computer vision: A review. Journal of King Saud University - Computer and Information Sciences, 33(3), 243–257. doi:10.1016/j.jksuci.2018.06.002.

Humeau-Heurtier, A. (2019). Texture feature extraction methods: A survey. IEEE Access, 7, 8975–9000. doi:10.1109/ACCESS.2018.2890743.

Joshi, K., & Patel, M. I. (2020). Recent advances in local feature detector and descriptor: a literature survey. International Journal of Multimedia Information Retrieval, 9(4), 231–247. doi:10.1007/s13735-020-00200-3.

Jogin, M., Mohana, Madhulika, M. S., Divya, G. D., Meghana, R. K., & Apoorva, S. (2018). Feature extraction using convolution neural networks (CNN) and deep learning. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT 2018 - Proceedings, 2319–2323. doi:10.1109/RTEICT42901.2018.9012507.

Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm validation with a limited sample size. PLoS ONE, 14(11), 224365. doi:10.1371/journal.pone.0224365.

Mo, X., Zhang, L., Li, H., & Qu, Z. (2019). A novel air quality early-warning system based on artificial intelligence. International Journal of Environmental Research and Public Health, 16(19), 3505. doi:10.3390/ijerph16193505.

Dias, D., & Cunha, J. P. S. (2018). Wearable health devices—vital sign monitoring, systems and technologies. Sensors (Switzerland), 18(8), 2414. doi:10.3390/s18082414.

Karim Mohamed Ibrahim, A., Rashid, R. A., Hamid, A. H. F. A., Adib Sarijari, M., & Baharudin, M. A. (2019). Lightweight IoT middleware for rapid application development. Telkomnika (Telecommunication Computing Electronics and Control), 17(3), 1385–1392. doi:10.12928/TELKOMNIKA.V17I3.11793.

Dudjak, M., & Martinović, G. (2020). An API-first methodology for designing a microservice-based backend as a service platform. Information Technology and Control, 49(2), 206–223. doi:10.5755/j01.itc.49.2.23757.

Widayanti, R., Aini, Q., Haryani, H., Lutfiani, N., & Apriliasari, D. (2021). Decentralized Electronic Vote Based on Blockchain P2P. 2021 9th International Conference on Cyber and IT Service Management, CITSM 2021, 1–7. doi:10.1109/CITSM52892.2021.9588851.

Rahardja, U. (2023). Risk Assessment, Risk Identification, and Control in The Process of Steel Smelting Using the Hiradc Method. APTISI Transactions on Management (ATM), 7(3), 261–272. doi:10.33050/atm.v7i3.2142.

Guan, Y., Shao, J., Wei, G., & Xie, M. (2018). Data Security and Privacy in Fog Computing. IEEE Network, 32(5), 106–111. doi:10.1109/MNET.2018.1700250.

Salam, R., Mardiana, S. E., Ak, M., Ardi, M. M. S. I., Harahap, E. P., Kom, S., ... & Mertayasa, I. K. (2023). The Magic Place of StartupreneUR. Asosiasi Pendidikan Tinggi Informatika dan Komputer (APTIKOM), Jakarta, Indonesia.

Khong, I., Aprila Yusuf, N., Nuriman, A., & Bayu Yadila, A. (2023). Exploring the Impact of Data Quality on Decision-Making Processes in Information Intensive Organizations. APTISI Transactions on Management (ATM), 7(3), 253–260. doi:10.33050/atm.v7i3.2138.

Wuisan, D. S. S., Sunardjo, R. A., Aini, Q., Yusuf, N. A., & Rahardja, U. (2023). Integrating Artificial Intelligence in Human Resource Management: A SmartPLS Approach for Entrepreneurial Success. APTISI Transactions on Technopreneurship, 5(3), 334–345. doi:10.34306/att.v5i3.355.

Hasanuddin, Adam, Rahman, A., Napitupulu, S., Sari, H. I., & Saiful, S. (2022). Mentoring MSME as a Pivotal Role to Achieve Comprehensive Results; A Case Study in Depok. International Journal of Research and Innovation in Social Science, 06(12), 644–649. doi:10.47772/ijriss.2022.61237.

Pontoh, R. S., Saliaputri, L., Nashwa, A. N., Khairina, N., Tantular, B., Toharudin, T., & Gumelar, F. (2023). Air Quality Mapping in Bandung City. Atmosphere, 14(9), 1444. doi:10.3390/atmos14091444.

Putra, F. M., & Sitanggang, I. S. (2020). Classification model of air quality in Jakarta using decision tree algorithm based on air pollutant standard index. IOP Conference Series: Earth and Environmental Science, 528(1), 12053. doi:10.1088/1755-1315/528/1/012053.

Wardhani, N., Gani, H., Zuhriyah, S., Gani, H., & Vidyarini, E. (2021). A Correlation Method for Meteorological Factors and Air pollution in association to covid-19 pandemic in the most affected city in Indonesia. ILKOM Jurnal Ilmiah, 13(3), 195–205. doi:10.33096/ilkom.v13i3.854.195-205.

Xia, D., Lou, S., Huang, Y., Zhao, Y., Li, D. H. W., & Zhou, X. (2019). A study on occupant behaviour related to air-conditioning usage in residential buildings. Energy and Buildings, 203, 109446. doi:10.1016/j.enbuild.2019.109446.

Tong, C. H. M., Yim, S. H. L., Rothenberg, D., Wang, C., Lin, C. Y., Chen, Y. D., & Lau, N. C. (2018). Assessing the impacts of seasonal and vertical atmospheric conditions on air quality over the Pearl River Delta region. Atmospheric Environment, 180, 69–78. doi:10.1016/j.atmosenv.2018.02.039.

Anderson, J. A., Glaser, J., & Glotzer, S. C. (2020). HOOMD-blue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Computational Materials Science, 173, 109363. doi:10.1016/j.commatsci.2019.109363.

Ribeiro, J., Lima, R., Eckhardt, T., & Paiva, S. (2021). Robotic Process Automation and Artificial Intelligence in Industry 4.0 - A Literature review. Procedia Computer Science, 181, 51–58. doi:10.1016/j.procs.2021.01.104.

Chatterjee, A., & Prinz, A. (2022). Applying Spring Security Framework with KeyCloak-Based OAuth2 to Protect Microservice Architecture APIs: A Case Study. Sensors, 22(5), 1703. doi:10.3390/s22051703.

Agarwal, R. (2022). Contemporary Attachment: Expert Review of a Webinar Outlining Affect Regulation in Elementary Age Children with Developmental Trauma. Alliant International University, California, United States.

Hagler Jr, D. J., Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A. S., ... & Dale, A. M. (2019). Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage, 202, 116091. doi:10.1016/j.neuroimage.2019.116091.

Sui, X., Qi, K., Nie, Y., Ding, N., Shi, X., Wu, X., Zhang, Q., & Wang, W. (2021). Air quality and public health risk assessment: A case study in a typical polluted city, North China. Urban Climate, 36, 100796. doi:10.1016/j.uclim.2021.100796.

Li, H., Wang, J., Li, R., & Lu, H. (2019). Novel analysis–forecast system based on multi-objective optimization for air quality index. Journal of Cleaner Production, 208, 1365–1383. doi:10.1016/j.jclepro.2018.10.129.

Almalawi, A., Alsolami, F., Khan, A. I., Alkhathlan, A., Fahad, A., Irshad, K., Qaiyum, S., & Alfakeeh, A. S. (2022). An IoT based system for magnify air pollution monitoring and prognosis using hybrid artificial intelligence technique. Environmental Research, 206, 112576. doi:10.1016/j.envres.2021.112576.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-03-017

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Danny Manongga, Untung Rahardja, Irwan Sembiring, Qurotul Aini, Abdul Wahab