Innovative Date Fruit Classifier Based on Scatter Wavelet and Stacking Ensemble
Abstract
Doi: 10.28991/HIJ-2024-05-02-010
Full Text: PDF
Keywords
References
Albarrak, K., Gulzar, Y., Hamid, Y., Mehmood, A., & Soomro, A. B. (2022). A Deep Learning-Based Model for Date Fruit Classification. Sustainability (Switzerland), 14(10), 6339. doi:10.3390/su14106339.
Muhammad, G. (2015). Date fruits classification using texture descriptors and shape-size features. Engineering Applications of Artificial Intelligence, 37, 361–367. doi:10.1016/j.engappai.2014.10.001.
Haidar, A., Dong, H., & Mavridis, N. (2012). Image-based date fruit classification. International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops, 357–363. doi:10.1109/ICUMT.2012.6459693.
Alharbi, K. L., Raman, J., & Shin, H. J. (2021). Date fruit and seed in nutricosmetics. Cosmetics, 8(3), 59. doi:10.3390/cosmetics8030059.
Khayer, M. A., Hasan, M. S., & Sattar, A. (2021). Arabian date classification using CNN algorithm with various pre-trained models. Proceedings of the 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, ICICV 2021, 1431–1436. doi:10.1109/ICICV50876.2021.9388413.
Muhammad, G. (2014). Automatic date fruit classification by using local texture descriptors and shape-size features. Proceedings - UKSim-AMSS 8th European Modelling Symposium on Computer Modelling and Simulation, EMS 2014, 174–179. doi:10.1109/EMS.2014.63.
Alsirhani, A., Siddiqi, M. H., Mostafa, A. M., Ezz, M., & Mahmoud, A. A. (2023). A Novel Classification Model of Date Fruit Dataset Using Deep Transfer Learning. Electronics (Switzerland), 12(3), 665. doi:10.3390/electronics12030665.
Nasiri, A., Taheri-Garavand, A., & Zhang, Y. D. (2019). Image-based deep learning automated sorting of date fruit. Postharvest Biology and Technology, 153, 133–141. doi:10.1016/j.postharvbio.2019.04.003.
Momeny, M., Jahanbakhshi, A., Jafarnezhad, K., & Zhang, Y. D. (2020). Accurate classification of cherry fruit using deep CNN based on hybrid pooling approach. Postharvest Biology and Technology, 166, 111204. doi:10.1016/j.postharvbio.2020.111204.
Zhang, D., Lee, D. J., Tippetts, B. J., & Lillywhite, K. D. (2014). Date maturity and quality evaluation using color distribution analysis and back projection. Journal of Food Engineering, 131, 161–169. doi:10.1016/j.jfoodeng.2014.02.002.
Ammari, A. C., Khriji, L., & Awadalla, M. (2020). HW/SW Co-’esign for Dates Classification on Xilinx Zynq SoC. Conference of Open Innovation Association, FRUCT, 2020-April, 10–15. doi:10.23919/FRUCT48808.2020.9087548.
Altaheri, H., Alsulaiman, M., & Muhammad, G. (2019). Date Fruit Classification for Robotic Harvesting in a Natural Environment Using Deep Learning. IEEE Access, 7, 117115–117133. doi:10.1109/ACCESS.2019.2936536.
Ishikawa, T., Hayashi, A., Nagamatsu, S., Kyutoku, Y., Dan, I., Wada, T., Oku, K., Saeki, Y., Uto, T., Tanabata, T., Isobe, S., & Kochi, N. (2018). Classification of strawberry fruit shape by machine learning. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2), 463–470. doi:10.5194/isprs-archives-XLII-2-463-2018.
Rybacki, P., Niemann, J., Derouiche, S., Chetehouna, S., Boulaares, I., Seghir, N. M., Diatta, J., & Osuch, A. (2024). Convolutional Neural Network (CNN) Model for the Classification of Varieties of Date Palm Fruits (Phoenix dactylifera L.). Sensors, 24(2), 558. doi:10.3390/s24020558.
Fadel, M. (2007). Date fruits classification using probabilistic neural networks. Agricultural Engineering International: CIGR Journal, 9, 1-11.
M.Alrajeh, K., & A. A. Alzohairy, T. (2012). Date Fruits Classification using MLP and RBF Neural Networks. International Journal of Computer Applications, 41(10), 36–41. doi:10.5120/5579-7686.
Sahidullah, M., Nayan, N. M., Morshed, M. S., Hossain, M. M., & Islam, M. U. (2023). Date Fruit Classification with Machine Learning and Explainable Artificial Intelligence. International Journal of Computer Applications, 184(50), 1–5. doi:10.5120/ijca2023922617.
ÖZALTIN, Ö. (2024). Date Fruit Classification by Using Image Features Based on Machine Learning Algorithms. Research in Agricultural Sciences, 55(1), 26–35. doi:10.5152/auaf.2024.23171.
Ghazal, S., Qureshi, W. S., Khan, U. S., Iqbal, J., Rashid, N., & Tiwana, M. I. (2021). Analysis of visual features and classifiers for Fruit classification problem. Computers and Electronics in Agriculture, 187, 106267. doi:10.1016/j.compag.2021.106267.
Abi Sen, A. A., Bahbouh, N. M., Alkhodre, A. B., Aldhawi, A. M., Aldham, F. A., & Aljabri, M. I. (2020). A classification algorithm for date fruits. Proceedings of the 7th International Conference on Computing for Sustainable Global Development, INDIACom 2020, 235–239. doi:10.23919/INDIACom49435.2020.9083706.
Koklu, M., Kursun, R., Taspinar, Y. S., & Cinar, I. (2021). Classification of Date Fruits into Genetic Varieties Using Image Analysis. Mathematical Problems in Engineering, 2021, 1–13. doi:10.1155/2021/4793293.
Noutfia, Y., & Ropelewska, E. (2023). Innovative Models Built Based on Image Textures Using Traditional Machine Learning Algorithms for Distinguishing Different Varieties of Moroccan Date Palm Fruit (Phoenix dactylifera L.). Agriculture (Switzerland), 13(1), 26. doi:10.3390/agriculture13010026.
Magsi, A., Ahmed Mahar, J., & Danwar, S. H. (2019). Date Fruit Recognition using Feature Extraction Techniques and Deep Convolutional Neural Network. Indian Journal of Science and Technology, 12(32), 1–12. doi:10.17485/ijst/2019/v12i32/146441.
Almomen, M., Al-Saeed, M., & Ahmad, H. F. (2023). Date Fruit Classification Based on Surface Quality Using Convolutional Neural Network Models. Applied Sciences (Switzerland), 13(13), 7821. doi:10.3390/app13137821.
Alhamdan, W. S. N., & Howe, J. M. (2021). Classification of Date Fruits in a Controlled Environment Using Convolutional Neural Networks. Advances in Intelligent Systems and Computing, 1339, 154–163. doi:10.1007/978-3-030-69717-4_16.
Al-Sabaawi, A., Hasan, R. I., Fadhel, M. A., Al-Shamma, O., & Alzubaidi, L. (2021). Employment of Pre-trained Deep Learning Models for Date Classification: A Comparative Study. Intelligent Systems Design and Applications: 20th International Conference on Intelligent Systems Design and Applications (ISDA 2020), December 12-15, 2020, 181–189. doi:10.1007/978-3-030-71187-0_17.
Alresheedi, K. M., Aladhadh, S., Khan, R. U., & Qamar, A. M. (2022). Dates fruit recognition: From classical fusion to deep learning. Computer Systems Science and Engineering, 40(1), 151–166. doi:10.32604/CSSE.2022.017931.
Ibrahim, D. M., & Elshennawy, N. M. (2022). Improving Date Fruit Classification Using CycleGAN-Generated Dataset. CMES - Computer Modeling in Engineering and Sciences, 130(3), 331-348. doi:10.32604/cmes.2022.016419.
Nadhif, M. F., & Dwiasnati, S. (2023). Classification of Date Fruit Types Using CNN Algorithm Based on Type. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(1), 36–42. doi:10.57152/malcom.v3i1.724.
Faisal, M., Alsulaiman, M., Arafah, M., & Mekhtiche, M. A. (2020). IHDS: Intelligent harvesting decision system for date fruit based on maturity stage using deep learning and computer vision. IEEE Access, 8, 167985–167997. doi:10.1109/ACCESS.2020.3023894.
Indriani, O. R., Kusuma, E. J., Sari, C. A., Rachmawanto, E. H., & Setiadi, D. R. I. M. (2017). Tomatoes classification using K-NN based on GLCM and HSV color space. Proceedings - 2017 International Conference on Innovative and Creative Information Technology: Computational Intelligence and IoT, ICITech 2017, 2018-January, 1–6. doi:10.1109/INNOCIT.2017.8319133.
Mallat, S. (2012). Group Invariant Scattering. Communications on Pure and Applied Mathematics, 65(10), 1331–1398. doi:10.1002/cpa.21413.
Bruna, J., & Mallat, S. (2013). Invariant scattering convolution networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1872–1886. doi:10.1109/TPAMI.2012.230.
Aiadi, O., Khaldi, B., Kherfi, M. L., Mekhalfi, M. L., & Alharbi, A. (2022). Date Fruit Sorting Based on Deep Learning and Discriminant Correlation Analysis. IEEE Access, 10, 79655–79668. doi:10.1109/ACCESS.2022.3194550.
Jin, Y., & Duan, Y. (2020). Wavelet scattering network-based machine learning for ground penetrating radar imaging: Application in pipeline identification. Remote Sensing, 12(21), 1–24. doi:10.3390/rs12213655.
Soro, B., & Lee, C. (2019). A wavelet scattering feature extraction approach for deep neural network based indoor fingerprinting localization. Sensors (Switzerland), 19(8), 1790. doi:10.3390/s19081790.
Mienye, I. D., & Sun, Y. (2022). A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access, 10, 99129–99149. doi:10.1109/ACCESS.2022.3207287.
Kumar, M., Singhal, S., Shekhar, S., Sharma, B., & Srivastava, G. (2022). Optimized Stacking Ensemble Learning Model for Breast Cancer Detection and Classification Using Machine Learning. Sustainability (Switzerland), 14(21), 13998. doi:10.3390/su142113998.
Taspinar, Y. S., Cinar, I., & Koklu, M. (2022). Classification by a stacking model using CNN features for COVID-19 infection diagnosis. Journal of X-Ray Science and Technology, 30(1), 73–88. doi:10.3233/XST-211031.
Alhamdan, W. S. N. (2024). Date Fruit Image Dataset in Controlled Environment: Single date fruit images taken in a controlled environment. Available online: https://www.kaggle.com/datasets/wadhasnalhamdan/date-fruit-image-dataset-in-controlled-environment?resource=download (accessed on March 2024).
DOI: 10.28991/HIJ-2024-05-02-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ali Abdulmunim Al-kharaz, Ahmed Bahaaulddin A. Alwahhab, Vian Talal Sabeeh