The Effect of Polyvinyl Alcohol Concentration on the Growth Kinetics of KTiOPO4 Nanoparticles Synthesized by the Co-precipitation Method

E. Gharibshahian

Abstract


KTiOPO4 nanoparticles are known as the best candidates to be utilized for second-harmonic generation in multiphoton microscopes and bio labels. Size and shape are important and effective parameters to control the properties of nanoparticles. In this paper, we will investigate the role of capping agent concentration on the size and shape control of KTP nanoparticles. We synthesized KTP nanoparticles by the co-precipitation method. Polyvinyl alcohol with different mole ratios to titanium ion (1:3, 1:2, 1:1) was used as a capping agent. Products were examined by X-ray diffraction patterns and scanning electron microscopy analyses. The X-ray diffraction patterns confirmed the formation of the KTP structure. The biggest (56.36 nm) and smallest (39.42 nm) grain sizes were obtained by using 1:3 and 1:1 mole ratios of capping agent, respectively. Dumbly, spherical and polyhedral forms of KTP nanoparticles were observed by the change in capping agent mole ratio. The narrowest size distribution of KTiOPO4 nanoparticles was obtained at a 1:1 mole ratio of capping agent.

 

Doi: 10.28991/HIJ-2020-01-04-06

Full Text: PDF


Keywords


Co-precipitation Method; Nanoparticles; Potassium Titanyl Phosphate; Size Control; Shape Control.

References


Canalias, C., Nordlöf, M., Pasiskevicius, V., & Laurell, F. (2009). A KTiOPO4 nonlinear photonic crystal for blue second harmonic generation. Applied Physics Letters, 94(8), 081121. doi:10.1063/1.3093798.

Zukauskas, A., Pasiskevicius, V., & Canalias, C. (2013). Second-harmonic generation in periodically poled bulk Rb-doped KTiOPO_4 below 400 nm at high peak-intensities. Optics Express, 21(2), 1395. doi:10.1364/oe.21.001395.

Galceran, M., Pujol, M. C., Carvajal, J. J., Tkaczyk, S., Kityk, I. V., Díaz, F., & Aguiló, M. (2008). Synthesis and characterization of KTiOPO4nanocrystals and their PMMA nanocomposites. Nanotechnology, 20(3), 035705. doi:10.1088/0957-4484/20/3/035705.

Risk, W. P. (1991). Fabrication and characterization of planar ion-exchanged KTiOPO4waveguides for frequency doubling. Applied Physics Letters, 58(1), 19-21. doi:10.1063/1.104436.

Sorokin, N. I., Novikova, N. E., Shaldin, Y. V., & Tseitlin, M. (2018). Structural Conditionality of the Ionic Conductivity of MTiORO4 (M = K, Rb; R = P, As) Single Crystals. Crystallography Reports, 63(2), 207–211. doi:10.1134/s106377451802027x.

Sorokin, N. I., & Shaldin, Y. V. (2018). Ionic Conductivity of KTiOPO4 Single Crystals Grown by Flux Crystallization under Different Conditions. Crystallography Reports, 63(5), 780–783. doi:10.1134/s1063774518050292.

Gharibshahian, E., Tafreshi, M. J., & Fazli, M. (2009). Growth of KTiOPO4 crystals by flux technique and their characterization. J. Pure. Ap. Phy 47, 356-361.

Elaheh, G., & Majid, J. T. (2015). The effect of cooling rate on size, quality and morphology of KTiOPO4(KTP) crystals grown by different nucleation techniques. Crystal Research and Technology, 50(8), 603–612. doi:10.1002/crat.201500002.

Zhang, C., Huang, L., Zhou, W., Zhang, G., Hou, H., Ruan, Q., … Wang, G. (2006). Growth of KTP crystals with high damage threshold by hydrothermal method. Journal of Crystal Growth, 292(2), 364–367. doi:10.1016/j.jcrysgro.2006.04.036.

Le Xuan, L., Zhou, C., Slablab, A., Chauvat, D., Tard, C., Perruchas, S., … Roch, J.-F. (2008). Photostable Second-Harmonic Generation from a Single KTiOPO4Nanocrystal for Nonlinear Microscopy. Small, 4(9), 1332–1336. doi:10.1002/smll.200701093.

Abrabri, M., Larbot, A., Persin, M., Sarrazin, J., Rafiq, M., & Cot, L. (1998). Potassium titanyl phosphate membranes: surface properties and application to ionic solution filtration. Journal of Membrane Science, 139(2), 275–283. doi:10.1016/s0376-7388(97)00259-7.

Mayer, L., Slablab, A., Dantelle, G., Jacques, V., Lepagnol-Bestel, A.-M., Perruchas, S., … Roch, J.-F. (2013). Single KTP nanocrystals as second-harmonic generation biolabels in cortical neurons. Nanoscale, 5(18), 8466. doi:10.1039/c3nr01251d.

Dahaoui, S., Hansen, N. K., Protas, J., Krane, H.-G., Fischer, K., & Marnier, G. (1999). Electric properties of KTiOPO4and NaTiOPO4from temperature-dependent X-ray diffraction. Journal of Applied Crystallography, 32(1), 1–10. doi:10.1107/s002188989800497x.

Barbé, C. J., Harmer, M. A., & Scherer, G. W. (1997). Sol-gel synthesis of potassium titanyl phosphate: Solution chemistry and gelation. Journal of Sol-Gel Science and Technology, 9(2), 183–199. doi:10.1007/bf02439398.

Kanno, Y. (1994). Synthesis and sintering of KTiOPO4, via mechanochemical mixing route. Journal of Alloys and Compounds, 210(1-2), 45–52. doi:10.1016/0925-8388(94)90113-9.

Arul Dhas, N., & Patil, K. C. (1993). Synthesis of A1PO4, LaPO4 and KTiOPO4 by flash combustion. Journal of Alloys and Compounds, 202(1-2), 137–141. doi:10.1016/0925-8388(93)90532-r.

Biswas, S. K., Pathak, A., & Pramanik, P. (2007). Synthesis of Nanocrystalline KTiOPO4Powder by Chemical Method. Journal of the American Ceramic Society, 90(4), 1071–1076. doi:10.1111/j.1551-2916.2007.01591.x.

Gharibshahian, E., Jafar Tafershi, M., & Fazli, M. (2018). Effects of solution concentration and capping agents on the properties of potassium titanyl phosphate noparticles synthesized using a co-precipitation method. Journal of Physics and Chemistry of Solids, 116, 241–249. doi:10.1016/j.jpcs.2018.01.015.

Gharibshahian, E., Tafreshi, M. J., & Behzad, M. (2020). The effects of solution pH on structural, optical and electrical properties of KTiOPO4(KTP) nanoparticles synthesized by hydrothermal method. Optical Materials, 109, 110230. doi:10.1016/j.optmat.2020.110230.

Houshiar, M., Zebhi, F., Razi, Z. J., Alidoust, A., & Askari, Z. (2014). Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. Journal of Magnetism and Magnetic Materials, 371, 43–48. doi:10.1016/j.jmmm.2014.06.059.

Shen, L., Qiao, Y., Guo, Y., Meng, S., Yang, G., Wu, M., & Zhao, J. (2014). Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceramics International, 40(1), 1519–1524. doi:10.1016/j.ceramint.2013.07.037.

Ali, S., Khan, S. A., Yamani, Z. H., Qamar, M. T., Morsy, M. A., & Sarfraz, S. (2018). Shape- and size-controlled superparamagnetic iron oxide nanoparticles using various reducing agents and their relaxometric properties by Xigo acorn area. Applied Nanoscience, 9(4), 479–489. doi:10.1007/s13204-018-0907-5.

Sadeghi, B., Sadjadi, M. A. S., & Pourahmad, A. (2008). Effects of protective agents (PVA & PVP) on the formation of silver nanoparticles. International Journal of Nanoscience and Nanotechnology, 4(1), 3-12.


Full Text: PDF

DOI: 10.28991/HIJ-2020-01-04-06

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Elaheh Gharibshahian