Real-Time Intrusion Detection in Power Grids Using Deep Learning: Ensuring DPU Data Security
Abstract
Doi: 10.28991/HIJ-2024-05-03-018
Full Text: PDF
Keywords
References
Lu, L., Yu, D., Lin, P., Gu, C., Feng, J., & Yang, S. (2022). Non-intrusive Load Monitoring Method Based on BIC Event Detection and LSTM Network Model. 2022 3rd International Conference on Advanced Electrical and Energy Systems, AEES 2022, 238–242. doi:10.1109/AEES56284.2022.10079312.
Adewole, K. S., & Torra, V. (2024). Energy disaggregation risk resilience through micro-aggregation and discrete Fourier transform. Information Sciences, 662. doi:10.1016/j.ins.2024.120211.
Dowalla, K., Bilski, P., Łukaszewski, R., Wójcik, A., & Kowalik, R. (2022). Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring. Energies, 15(9), 3325. doi:10.3390/en15093325.
Tan, X., Li, W., Xu, X., Ao, G., Zhou, F., Zhao, J., Tan, Q., & Zhang, W. (2022). Contactless AC/DC Wide-Bandwidth Current Sensor Based on Composite Measurement Principle. Sensors, 22(20), 7979. doi:10.3390/s22207979.
Zhao, K., Zhang, R., Zhang, Y., Cai, Q., & Shu, J. (2021). An Event-Detection Algorithm for Non-intrusive Load Monitoring of Residential Appliances. Lecture Notes in Electrical Engineering, 718, 781–800. doi:10.1007/978-981-15-9746-6_59.
Ma, L., Meng, Q., Pan, S., & Liebman, A. (2021). PUMPNET: a deep learning approach to pump operation detection. Energy Informatics, 4(1), 1-17. doi:10.1186/s42162-020-00135-3.
Han, Y., Xu, Y., Huo, Y., & Zhao, Q. (2021). Non-intrusive load monitoring by voltage–current trajectory enabled asymmetric deep supervised hashing. IET Generation, Transmission and Distribution, 15(21), 3066–3080. doi:10.1049/gtd2.12242.
Zhang, G., Ji, X., Li, Y., & Xu, W. (2020). Power-based non-intrusive condition monitoring for terminal device in smart grid. Sensors (Switzerland), 20(13), 1–17. doi:10.3390/s20133635.
Bucci, G., Ciancetta, F., Fiorucci, E., Mari, S., & Fioravanti, A. (2021). State of art overview of Non-Intrusive Load Monitoring applications in smart grids. Measurement: Sensors, 18. doi:10.1016/j.measen.2021.100145.
Silva, M. D., & Liu, Q. (2024). A Review of NILM Applications with Machine Learning Approaches. Computers, Materials and Continua, 79(2), 2971–2989. doi:10.32604/cmc.2024.051289.
Adewole, K. S., & Torra, V. (2022). Privacy Issues in Smart Grid Data: From Energy Disaggregation to Disclosure Risk. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13426 LNCS, 71–84. doi:10.1007/978-3-031-12423-5_6.
Kommey, B., Tamakloe, E., Kponyo, J. J., Tchao, E. T., Agbemenu, A. S., & Nunoo-Mensah, H. (2024). An artificial intelligence-based non-intrusive load monitoring of energy consumption in an electrical energy system using a modified K-Nearest Neighbour algorithm. IET Smart Cities, 134-155. doi:10.1049/smc2.12075.
Tsai, M. S., & Lin, Y. K. (2023). Applying the Geometric Features of Cumulative Sums to the Development of Event Detection. Energies, 16(20), 7207. doi:10.3390/en16207207.
Liu, Y., Qiu, J., & Ma, J. (2022). SAMNet: Toward Latency-Free Non-Intrusive Load Monitoring via Multi-Task Deep Learning. IEEE Transactions on Smart Grid, 13(3), 2412–2424. doi:10.1109/TSG.2021.3139395.
Seyedi, Y., Karimi, H., Wetté, C., & Sansó, B. (2020). A New Approach to Reliability Assessment and Improvement of Synchrophasor Communications in Smart Grids. IEEE Transactions on Smart Grid, 11(5), 4415–4426. doi:10.1109/TSG.2020.2993944.
Green, D. H., Shaw, S. R., Lindahl, P., Kane, T. J., Donnal, J. S., & Leeb, S. B. (2020). A MultiScale Framework for Nonintrusive Load Identification. IEEE Transactions on Industrial Informatics, 16(2), 992–1002. doi:10.1109/TII.2019.2923236.
Xia, M., Liu, W., Wang, K., Song, W., Chen, C., & Li, Y. (2020). Non-intrusive load disaggregation based on composite deep long short-term memory network. Expert Systems with Applications, 160. doi:10.1016/j.eswa.2020.113669.
Pereira, L. (2019). NILMPEds: A performance evaluation dataset for event detection algorithms in non-intrusive load monitoring. Data, 4(3), 127. doi:10.3390/data4030127.
Huang, Q. (2018). Review: Energy-efficient smart building driven by emerging sensing, communication, and machine learning technologies. Engineering Letters, 26(3), 320–332.
Henao, N., Agbossou, K., Kelouwani, S., Hosseini, S. S., & Fournier, M. (2018). Power estimation of multiple two-state loads using a probabilistic non-intrusive approach. Energies, 11(1), 88. doi:10.3390/en11010088.
Otoum, S., Kantarci, B., & Mouftah, H. T. (2017). Detection of Known and Unknown Intrusive Sensor Behavior in Critical Applications. IEEE Sensors Letters, 1(5), 1-4. doi:10.1109/LSENS.2017.2752719.
Villani, C., Benatti, S., Brunelli, D., & Benini, L. (2017). A contactless, energy-neutral power meter for smart city applications. Lecture Notes in Electrical Engineering, 429, 177–182. doi:10.1007/978-3-319-55071-8_23.
Eibl, G., & Engel, D. (2015). Influence of data granularity on smart meter privacy. IEEE Transactions on Smart Grid, 6(2), 930–939. doi:10.1109/TSG.2014.2376613.
Chan, A. C. F., & Zhou, J. (2023). Non-Intrusive Protection for Legacy SCADA Systems. IEEE Communications Magazine, 61(6), 36–42. doi:10.1109/MCOM.003.2200564.
Liu, H., Fu, Y., Pan, K., Xu, W., Li, C., & Liu, C. (2023). Attack Detection for Distributed Photovoltaic Generation Systems Leveraging Cyber and Power Side Channel Data. 2023 IEEE PES Innovative Smart Grid Technologies - Asia, ISGT Asia 2023, 1-5. doi:10.1109/ISGTAsia54891.2023.10372698.
Etezadifar, M., Karimi, H., Aghdam, A. G., & Mahseredjian, J. (2023). Resilient Event Detection Algorithm for Non-Intrusive Load Monitoring Under Non-Ideal Conditions Using Reinforcement Learning. IEEE Transactions on Industry Applications, 60(2), 2085–2094. doi:10.1109/TIA.2023.3307347.
Lin, Y. H. (2022). An advanced smart home energy management system considering identification of ADLs based on non-intrusive load monitoring. Electrical Engineering, 104(5), 3391–3409. doi:10.1007/s00202-022-01546-z.
DOI: 10.28991/HIJ-2024-05-03-018
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Maoran Xiao, Qi Zhou, Zhen Zhang, Junjie Yin