A UAV Based Concrete Crack Detection and Segmentation Using 2-Stage Convolutional Network with Transfer Learning

Joses Sorilla, Timothy Scott C. Chu, Alvin Y. Chua

Abstract


This study explores a non-destructive testing (NDT) method for crack detection using a two-stage convolutional neural network (CNN) model, incorporating a combination of AlexNet and YOLO models through transfer learning. Crack detection is pivotal for assessing structural integrity and ensuring timely maintenance interventions. The developed model was rigorously tested in simulated environments and through physical experimentations with the use of a UAV to evaluate its effectiveness. A 2-stage model, based on AlexNet and YOLO, was developed for crack classification and segmentation. The developed model leveraged transfer learning to address limitations from traditional CNN models. A known dataset was used to evaluate the developed model, benchmarking it against other models. The classification network achieved an accuracy rate exceeding 90%, while the segmentation network successfully identified and delineated cracks in 85.71% of the images. Finally, the developed model was deployed using a UAV to perform crack detection and segmentation in a controlled environment. These results underscore the model's proficiency in both detecting and segmenting structural cracks, highlighting its potential as a reliable tool for enhancing the maintenance and safety of architectural structures.

 

Doi: 10.28991/HIJ-2024-05-03-010

Full Text: PDF


Keywords


Computer Vision; 2-Stage CNN; Crack Detection; Crack Segmentation; Transfer Learning; Unmanned Aerial Vehicles (UAV).

References


Lyasheva, S., Tregubov, V., & Shleymovich, M. (2019). Detection and recognition of pavement cracks based on computer vision technology. 2019 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2019, 1–5. doi:10.1109/ICIEAM.2019.8742778.

Kardovskyi, Y., & Moon, S. (2021). Artificial intelligence quality inspection of steel bars installation by integrating mask R-CNN and stereo vision. Automation in Construction, 130, 103850. doi:10.1016/j.autcon.2021.103850.

Deng, J., Singh, A., Zhou, Y., Lu, Y., & Lee, V. C. S. (2022). Review on computer vision-based crack detection and quantification methodologies for civil structures. Construction and Building Materials, 356, 129238. doi:10.1016/j.conbuildmat.2022.129238.

Kassas, Z. M., Khalife, J., Abdallah, A. A., & Lee, C. (2022). I Am Not Afraid of the GPS Jammer: Resilient Navigation Via Signals of Opportunity in GPS-Denied Environments. IEEE Aerospace and Electronic Systems Magazine, 37(7), 4–19. doi:10.1109/MAES.2022.3154110.

Chu, T. S., Chua, A., Say, M., Sybingco, E., & Roque, M. A. (2022). Swarm UAV Implementation Using Radio Localization on GPS Denied Areas. ASEAN Engineering Journal, 12(3), 111–116. doi:10.11113/aej.V12.17841.

Dinh, T. H., Ha, Q. P., & La, H. M. (2016). Computer vision-based method for concrete crack detection. 2016 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016, 1–6. doi:10.1109/ICARCV.2016.7838682.

Li, Q., Xu, X., Guan, J., & Yang, H. (2024). The Improvement of Faster-RCNN Crack Recognition Model and Parameters Based on Attention Mechanism. Symmetry, 16(8), 1027. doi:10.3390/sym16081027.

Paramanandham, N., Rajendiran, K., Poovathy J, F. G., Premanand, Y. S., Mallichetty, S. R., & Kumar, P. (2023). Pixel Intensity Resemblance Measurement and Deep Learning Based Computer Vision Model for Crack Detection and Analysis. Sensors, 23(6), 2954. doi:10.3390/s23062954.

Philip, R. E., Andrushia, A. D., Nammalvar, A., Gurupatham, B. G. A., & Roy, K. (2023). A Comparative Study on Crack Detection in Concrete Walls Using Transfer Learning Techniques. Journal of Composites Science, 7(4), 169. doi:10.3390/jcs7040169.

Quintana, M., Torres, J., & Menéndez, J. M. (2016). A simplified computer vision system for road surface inspection and maintenance. IEEE Transactions on Intelligent Transportation Systems, 17(3), 608–619. doi:10.1109/TITS.2015.2482222.

Hamishebahar, Y., Guan, H., So, S., & Jo, J. (2022). A Comprehensive Review of Deep Learning-Based Crack Detection Approaches. Applied Sciences (Switzerland), 12(3), 1374. doi:10.3390/app12031374.

Yu, S., Jia, S., & Xu, C. (2017). Convolutional neural networks for hyperspectral image classification. Neurocomputing, 219, 88–98. doi:10.1016/j.neucom.2016.09.010.

Yang, F., Huo, J., Cheng, Z., Chen, H., & Shi, Y. (2024). An Improved Mask R-CNN Micro-Crack Detection Model for the Surface of Metal Structural Parts. Sensors, 24(1), 62. doi:10.3390/s24010062.

Guo, F., Liu, J., Xie, Q., & Yu, H. (2024). A two-stage framework for pixel-level pavement surface crack detection. Engineering Applications of Artificial Intelligence, 133, 108312. doi:10.1016/j.engappai.2024.108312.

Chen, Z., Wang, C., Wu, J., Deng, C., & Wang, Y. (2023). Deep convolutional transfer learning-based structural damage detection with domain adaptation. Applied Intelligence, 53(5), 5085–5099. doi:10.1007/s10489-022-03713-y.

Brodzicki, A., Piekarski, M., Kucharski, D., Jaworek-Korjakowska, J., & Gorgon, M. (2020). Transfer learning methods as a new approach in computer vision tasks with small datasets. Foundations of Computing and Decision Sciences, 45(3), 179-193. doi:10.2478/fcds-2020-0010.

Hammouch, W., Chouiekh, C., Khaissidi, G., & Mrabti, M. (2022). Crack Detection and Classification in Moroccan Pavement Using Convolutional Neural Network. Infrastructures, 7(11), 152. doi:10.3390/infrastructures7110152.

Rajadurai, R. S., & Kang, S. T. (2021). Automated vision-based crack detection on concrete surfaces using deep learning. Applied Sciences (Switzerland), 11(11), 5229. doi:10.3390/app11115229.

Tang, Y., Zhang, A. A., Luo, L., Wang, G., & Yang, E. (2021). Pixel-level pavement crack segmentation with encoder-decoder network. Measurement: Journal of the International Measurement Confederation, 184, 109914. doi:10.1016/j.measurement.2021.109914.

Ali, R., Chuah, J. H., Talip, M. S. A., Mokhtar, N., & Shoaib, M. A. (2022). Structural crack detection using deep convolutional neural networks. Automation in Construction, 133, 103989. doi:10.1016/j.autcon.2021.103989.

Wang, J. J., Liu, Y. F., Nie, X., & Mo, Y. L. (2022). Deep convolutional neural networks for semantic segmentation of cracks. Structural Control and Health Monitoring, 29(1), 2850. doi:10.1002/stc.2850.

Kao, S. P., Chang, Y. C., & Wang, F. L. (2023). Combining the YOLOv4 Deep Learning Model with UAV Imagery Processing Technology in the Extraction and Quantization of Cracks in Bridges. Sensors, 23(5), 2572. doi:10.3390/s23052572.

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. doi:10.1109/TPAMI.2016.2577031.

Bai, T. (2020). Analysis on Two-stage Object Detection based on Convolutional Neural Networks. Proceedings - 2020 International Conference on Big Data and Artificial Intelligence and Software Engineering, ICBASE 2020, 321–325. doi:10.1109/ICBASE51474.2020.00074.

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2020). Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 386–397. doi:10.1109/TPAMI.2018.2844175.

Zhang, L., Yang, F., Daniel Zhang, Y., & Zhu, Y. J. (2016). Road crack detection using deep convolutional neural network. Proceedings - International Conference on Image Processing, ICIP, 2016-August, 3708–3712. doi:10.1109/ICIP.2016.7533052.

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9(4), 611–629. doi:10.1007/s13244-018-0639-9.

Huh, M., Agrawal, P., & Efros, A. A. (2016). What makes ImageNet good for transfer learning?. arXiv preprint arXiv:1608.08614. doi:10.48550/arXiv.1608.08614.

Chandrababu, G., Thomas Lee, O., & Rekha, K. S. (2022). An Abridged Review of Transfer Learning Technology. Proceedings 2nd International Conference on Next Generation Intelligent Systems, ICNGIS, 1–7. doi:10.1109/ICNGIS54955.2022.10079859.

Matarneh, S., Elghaish, F., Rahimian, F. P., Abdellatef, E., & Abrishami, S. (2024). Evaluation and optimisation of pre-trained CNN models for asphalt pavement crack detection and classification. Automation in Construction, 160, 105297. doi:10.1016/j.autcon.2024.105297.

Tan, Y., Li, S., Liu, H., Chen, P., & Zhou, Z. (2021). Automatic inspection data collection of building surface based on BIM and UAV. Automation in Construction, 131, 103905. doi:10.1016/j.autcon.2021.103881.

McGuire, K. (2024). Crazyflie 2.1 Back in Stock!. Bitcraze AB, Malmö, Sweden. Availbale online: https://www.bitcraze.io/products/crazyflie-2-1/ (accessed on May 2024).

Bitcraze. (2024). AI Deck 1.1. (Brain Boost: Artificial Intelligence in a Nutshell). Bitcraze AB, Malmö, Sweden. Availbale online: https://www.bitcraze.io/products/ai-deck/ (accessed on May 2024).

Bitcraze. (2024). Lighthouse Positioning Deck. Bitcraze AB, Malmö, Sweden. https://www.bitcraze.io/products/lighthouse-positioning-deck/ (accessed on May 2024).

Bitcraze. (2024). Lighthouse V2 Base Station. Bitcraze AB, Malmö, Sweden. https://store.bitcraze.io/products/lighthouse-v2-base-station (accessed on May 2024).

Özgenel, Ç. F., & Sorguç, A. G. (2018). Performance comparison of pretrained convolutional neural networks on crack detection in buildings. In Isarc. proceedings of the international symposium on automation and robotics in construction, IAARC Publications, 35, 1-8. doi:10.22260/ISARC2018/0094.

De la Escalera, A., & Armingol, J. (2010). Automatic chessboard detection for intrinsic and extrinsic camera parameter calibration. Sensors, 10(2), 2027-2044. doi:10.3390/s100202027.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-03-010

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Joses Sorilla, Timothy Scott C Chu, Alvin Y Chua