A UAV Based Concrete Crack Detection and Segmentation Using 2-Stage Convolutional Network with Transfer Learning
Abstract
Doi: 10.28991/HIJ-2024-05-03-010
Full Text: PDF
Keywords
References
Lyasheva, S., Tregubov, V., & Shleymovich, M. (2019). Detection and recognition of pavement cracks based on computer vision technology. 2019 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2019, 1–5. doi:10.1109/ICIEAM.2019.8742778.
Kardovskyi, Y., & Moon, S. (2021). Artificial intelligence quality inspection of steel bars installation by integrating mask R-CNN and stereo vision. Automation in Construction, 130, 103850. doi:10.1016/j.autcon.2021.103850.
Deng, J., Singh, A., Zhou, Y., Lu, Y., & Lee, V. C. S. (2022). Review on computer vision-based crack detection and quantification methodologies for civil structures. Construction and Building Materials, 356, 129238. doi:10.1016/j.conbuildmat.2022.129238.
Kassas, Z. M., Khalife, J., Abdallah, A. A., & Lee, C. (2022). I Am Not Afraid of the GPS Jammer: Resilient Navigation Via Signals of Opportunity in GPS-Denied Environments. IEEE Aerospace and Electronic Systems Magazine, 37(7), 4–19. doi:10.1109/MAES.2022.3154110.
Chu, T. S., Chua, A., Say, M., Sybingco, E., & Roque, M. A. (2022). Swarm UAV Implementation Using Radio Localization on GPS Denied Areas. ASEAN Engineering Journal, 12(3), 111–116. doi:10.11113/aej.V12.17841.
Dinh, T. H., Ha, Q. P., & La, H. M. (2016). Computer vision-based method for concrete crack detection. 2016 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016, 1–6. doi:10.1109/ICARCV.2016.7838682.
Li, Q., Xu, X., Guan, J., & Yang, H. (2024). The Improvement of Faster-RCNN Crack Recognition Model and Parameters Based on Attention Mechanism. Symmetry, 16(8), 1027. doi:10.3390/sym16081027.
Paramanandham, N., Rajendiran, K., Poovathy J, F. G., Premanand, Y. S., Mallichetty, S. R., & Kumar, P. (2023). Pixel Intensity Resemblance Measurement and Deep Learning Based Computer Vision Model for Crack Detection and Analysis. Sensors, 23(6), 2954. doi:10.3390/s23062954.
Philip, R. E., Andrushia, A. D., Nammalvar, A., Gurupatham, B. G. A., & Roy, K. (2023). A Comparative Study on Crack Detection in Concrete Walls Using Transfer Learning Techniques. Journal of Composites Science, 7(4), 169. doi:10.3390/jcs7040169.
Quintana, M., Torres, J., & Menéndez, J. M. (2016). A simplified computer vision system for road surface inspection and maintenance. IEEE Transactions on Intelligent Transportation Systems, 17(3), 608–619. doi:10.1109/TITS.2015.2482222.
Hamishebahar, Y., Guan, H., So, S., & Jo, J. (2022). A Comprehensive Review of Deep Learning-Based Crack Detection Approaches. Applied Sciences (Switzerland), 12(3), 1374. doi:10.3390/app12031374.
Yu, S., Jia, S., & Xu, C. (2017). Convolutional neural networks for hyperspectral image classification. Neurocomputing, 219, 88–98. doi:10.1016/j.neucom.2016.09.010.
Yang, F., Huo, J., Cheng, Z., Chen, H., & Shi, Y. (2024). An Improved Mask R-CNN Micro-Crack Detection Model for the Surface of Metal Structural Parts. Sensors, 24(1), 62. doi:10.3390/s24010062.
Guo, F., Liu, J., Xie, Q., & Yu, H. (2024). A two-stage framework for pixel-level pavement surface crack detection. Engineering Applications of Artificial Intelligence, 133, 108312. doi:10.1016/j.engappai.2024.108312.
Chen, Z., Wang, C., Wu, J., Deng, C., & Wang, Y. (2023). Deep convolutional transfer learning-based structural damage detection with domain adaptation. Applied Intelligence, 53(5), 5085–5099. doi:10.1007/s10489-022-03713-y.
Brodzicki, A., Piekarski, M., Kucharski, D., Jaworek-Korjakowska, J., & Gorgon, M. (2020). Transfer learning methods as a new approach in computer vision tasks with small datasets. Foundations of Computing and Decision Sciences, 45(3), 179-193. doi:10.2478/fcds-2020-0010.
Hammouch, W., Chouiekh, C., Khaissidi, G., & Mrabti, M. (2022). Crack Detection and Classification in Moroccan Pavement Using Convolutional Neural Network. Infrastructures, 7(11), 152. doi:10.3390/infrastructures7110152.
Rajadurai, R. S., & Kang, S. T. (2021). Automated vision-based crack detection on concrete surfaces using deep learning. Applied Sciences (Switzerland), 11(11), 5229. doi:10.3390/app11115229.
Tang, Y., Zhang, A. A., Luo, L., Wang, G., & Yang, E. (2021). Pixel-level pavement crack segmentation with encoder-decoder network. Measurement: Journal of the International Measurement Confederation, 184, 109914. doi:10.1016/j.measurement.2021.109914.
Ali, R., Chuah, J. H., Talip, M. S. A., Mokhtar, N., & Shoaib, M. A. (2022). Structural crack detection using deep convolutional neural networks. Automation in Construction, 133, 103989. doi:10.1016/j.autcon.2021.103989.
Wang, J. J., Liu, Y. F., Nie, X., & Mo, Y. L. (2022). Deep convolutional neural networks for semantic segmentation of cracks. Structural Control and Health Monitoring, 29(1), 2850. doi:10.1002/stc.2850.
Kao, S. P., Chang, Y. C., & Wang, F. L. (2023). Combining the YOLOv4 Deep Learning Model with UAV Imagery Processing Technology in the Extraction and Quantization of Cracks in Bridges. Sensors, 23(5), 2572. doi:10.3390/s23052572.
Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. doi:10.1109/TPAMI.2016.2577031.
Bai, T. (2020). Analysis on Two-stage Object Detection based on Convolutional Neural Networks. Proceedings - 2020 International Conference on Big Data and Artificial Intelligence and Software Engineering, ICBASE 2020, 321–325. doi:10.1109/ICBASE51474.2020.00074.
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2020). Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 386–397. doi:10.1109/TPAMI.2018.2844175.
Zhang, L., Yang, F., Daniel Zhang, Y., & Zhu, Y. J. (2016). Road crack detection using deep convolutional neural network. Proceedings - International Conference on Image Processing, ICIP, 2016-August, 3708–3712. doi:10.1109/ICIP.2016.7533052.
Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9(4), 611–629. doi:10.1007/s13244-018-0639-9.
Huh, M., Agrawal, P., & Efros, A. A. (2016). What makes ImageNet good for transfer learning?. arXiv preprint arXiv:1608.08614. doi:10.48550/arXiv.1608.08614.
Chandrababu, G., Thomas Lee, O., & Rekha, K. S. (2022). An Abridged Review of Transfer Learning Technology. Proceedings 2nd International Conference on Next Generation Intelligent Systems, ICNGIS, 1–7. doi:10.1109/ICNGIS54955.2022.10079859.
Matarneh, S., Elghaish, F., Rahimian, F. P., Abdellatef, E., & Abrishami, S. (2024). Evaluation and optimisation of pre-trained CNN models for asphalt pavement crack detection and classification. Automation in Construction, 160, 105297. doi:10.1016/j.autcon.2024.105297.
Tan, Y., Li, S., Liu, H., Chen, P., & Zhou, Z. (2021). Automatic inspection data collection of building surface based on BIM and UAV. Automation in Construction, 131, 103905. doi:10.1016/j.autcon.2021.103881.
McGuire, K. (2024). Crazyflie 2.1 Back in Stock!. Bitcraze AB, Malmö, Sweden. Availbale online: https://www.bitcraze.io/products/crazyflie-2-1/ (accessed on May 2024).
Bitcraze. (2024). AI Deck 1.1. (Brain Boost: Artificial Intelligence in a Nutshell). Bitcraze AB, Malmö, Sweden. Availbale online: https://www.bitcraze.io/products/ai-deck/ (accessed on May 2024).
Bitcraze. (2024). Lighthouse Positioning Deck. Bitcraze AB, Malmö, Sweden. https://www.bitcraze.io/products/lighthouse-positioning-deck/ (accessed on May 2024).
Bitcraze. (2024). Lighthouse V2 Base Station. Bitcraze AB, Malmö, Sweden. https://store.bitcraze.io/products/lighthouse-v2-base-station (accessed on May 2024).
Özgenel, Ç. F., & Sorguç, A. G. (2018). Performance comparison of pretrained convolutional neural networks on crack detection in buildings. In Isarc. proceedings of the international symposium on automation and robotics in construction, IAARC Publications, 35, 1-8. doi:10.22260/ISARC2018/0094.
De la Escalera, A., & Armingol, J. (2010). Automatic chessboard detection for intrinsic and extrinsic camera parameter calibration. Sensors, 10(2), 2027-2044. doi:10.3390/s100202027.
DOI: 10.28991/HIJ-2024-05-03-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Joses Sorilla, Timothy Scott C Chu, Alvin Y Chua