Innovative Metal Powder Production Using CFD with Convergent-Divergent Nozzles in Wire Arc Atomization

Matee Sukkee, Phanphong Kongphan

Abstract


This study aims to enhance the production of metal powders using a novel approach that integrates computational fluid dynamics (CFD) with convergent-divergent (C-D) nozzles in wire arc spraying atomization (WASA). The primary objective is to investigate the influence of nozzle design on particle size distribution and production efficiency. Utilizing the ANSYS CFD Fluent program, simulations were conducted to analyze the effects of various parameters, including throat diameter and divergent angles, on gas dynamics and metal droplet behavior. The findings reveal that C-D nozzles facilitate the acceleration of gas flow to supersonic speeds, significantly improving the shear force acting on the molten metal, thereby promoting the fragmentation of droplets into smaller particles. Notably, the optimized nozzle configuration achieved a median particle size (D50) of 44.42 µm, suitable for additive manufacturing applications. The novelty of this work lies in its comprehensive simulation framework that allows for rapid virtual testing, potentially leading to significant improvements in the efficiency and quality of metal powder production processes. This research addresses critical gaps in the existing literature and provides a robust foundation for future studies in the field of metal powder manufacturing.

 

Doi: 10.28991/HIJ-2024-05-03-02

Full Text: PDF


Keywords


Computational Fluid Dynamics; Convergent-Divergent Nozzles; Wire Arc Spraying Atomization; Metal Powder Manufacturing.

References


Sasnauskas, A., Coban, A., Zhang, W., Abbot, W. M., Babu, R. P., Pham, M. S., & Lupoi, R. (2024). Metal additive manufacturing using powder sheets (MAPS) of HEA CoNiCrFeMn: The effect of the polymer content on microstructure and mechanical properties. CIRP Annals, 73(1), 173–176. doi:10.1016/j.cirp.2024.04.066.

Zhang, W., Sasnauskas, A., Coban, A., Marola, S., Casati, R., Yin, S., Babu, R. P., & Lupoi, R. (2024). Powder sheets additive manufacturing: Principles and capabilities for multi-material printing. Additive Manufacturing Letters, 8, 100187. doi:10.1016/j.addlet.2023.100187.

Deng, G., Dong, B., Zhang, C., Wang, R., Yang, Z., Nie, N., Wang, P., Wang, L., Wang, H., Tian, Y., Su, L., & Li, H. (2024). Microstructure, microhardness and high-temperature tribological properties of CoCrFeNiMnTi0.3 high entropy alloy coating manufactured by powder-bed arc additive manufacturing. Surface and Coatings Technology, 485, 130918. doi:10.1016/j.surfcoat.2024.130918.

Yang, S. S., Lai, H. L., Chen, C. C., Lu, S. T., Dai, Y. M., Cheng, W. C., Fuh, Y. K., & Li, T. T. (2024). Wire-arc spray directed energy deposition: Correlation of chamber kits refurbishing and particle defects reduction in Ta/TaN thin-film physical deposition processes. Journal of Materials Research and Technology, 30, 2754–2767. doi:10.1016/j.jmrt.2024.03.180.

Afshari, A. A., McKinney, W., Cumpston, J. L., Leonard, H. D., Cumpston, J. B., Meighan, T. G., Jackson, M., Friend, S., Kodali, V., Lee, E. G., & Antonini, J. M. (2022). Development of a thermal spray coating aerosol generator and inhalation exposure system. Toxicology Reports, 9, 126–135. doi:10.1016/j.toxrep.2022.01.004.

Zhixiang, Z., Jiao, Z., Zhengwei, L., Yuandong, M., Guiming, L., Liangliang, W., & Zhongning, G. (2023). Study on the corrosion electrochemistry behavior and wear resistance of the arc thermal sprayed Zn–Al alloy coating. Journal of Materials Research and Technology, 24, 8414–8428. doi:10.1016/j.jmrt.2023.05.109.

Zangana, L. M. K., & Barwari, R. R. I. (2020). The effect of convergent-divergent tube on the cooling capacity of vortex tube: An experimental and numerical study. Alexandria Engineering Journal, 59(1), 239–246. doi:10.1016/j.aej.2019.12.036.

Tsuge, N. (2015). Existence of global solutions for isentropic gas flow in a divergent nozzle with friction. Journal of Mathematical Analysis and Applications, 426(2), 971–977. doi:10.1016/j.jmaa.2015.01.031.

Biju Kuttan, P., & Sajesh, M. (2013). Optimization of divergent angle of a rocket engine nozzle using Computational Fluid Dynamics. The International Journal of Engineering and Science, 2(1), 196–207.

Balabel, A., Hegab, A. M., Nasr, M., & El-Behery, S. M. (2011). Assessment of turbulence modeling for gas flow in two-dimensional convergent-divergent rocket nozzle. Applied Mathematical Modelling, 35(7), 3408–3422. doi:10.1016/j.apm.2011.01.013.

Sazonov, Y. A., Mokhov, M. A., Bondarenko, A. V., Voronova, V. V., Tumanyan, K. A., & Konyushkov, E. I. (2023). Interdisciplinary Studies of Jet Systems using Euler Methodology and Computational Fluid Dynamics Technologies. HighTech and Innovation Journal, 4(4), 703–719. doi:10.28991/HIJ-2023-04-04-01.

Chen, Y., Liang, X., Liu, Y., & Xu, B. (2009). Numerical analysis of the effect of arc spray gun configuration parameters on the external gas flow. Journal of Materials Processing Technology, 209(18–19), 5924–5931. doi:10.1016/j.jmatprotec.2009.07.009.

Malik, N. M., Zaheer, M. A., & Farooq, M. A. (2024). Effect of Convergent Angle on different Flow Parameters of a Convergent-Divergent Nozzle. MATEC Web of Conferences, 398, 01001. doi:10.1051/matecconf/202439801001.

Khalid, M. W., & Ahsan, M. (2020). Computational Fluid Dynamics Analysis of Compressible Flow Through a Converging-Diverging Nozzle using the k-ε Turbulence Model. Engineering, Technology and Applied Science Research, 10(1), 5180–5185. doi:10.48084/etasr.3140.

Shuvo, M. S., Sakib, M. N., Rahman, R., & Saha, S. (2022). Particle deposition and characteristics of turbulent flow in converging and diverging nozzles using Eulerian-Lagrangian approach. Results in Engineering, 16, 100669. doi:10.1016/j.rineng.2022.100669.

Urionabarrenetxea, E., Martín, J. M., Avello, A., & Rivas, A. (2022). Simulation and validation of the gas flow in close-coupled gas atomisation process: Influence of the inlet gas pressure and the throat width of the supersonic gas nozzle. Powder Technology, 407, 117688. doi:10.1016/j.powtec.2022.117688.

Aniket, M., & Bhagat, D. (2022). CFD Analysis and Parameter Optimization of Convergent Divergent Nozzle. International Journal of All Research Education and Scientific Methods, 10(7), 2455–6211.

Zema, T. B. (2022). A 3-D Numerical Investigation and Parametric_CFD_Analysis of Flow Through Convergent-Divergent Nozzle Using ANSYS_CFX. Journal of University of Shanghai for Science and Technology, 24, 305–314.

Hua, J., Gobber, F. S., Actis Grande, M., Mortensen, D., & Odden, J. O. (2024). A numerical modeling framework for predicting the effects of operational parameters on particle size distribution in the gas atomization process for Nickel-Silicon alloys. Powder Technology, 435, 119408. doi:10.1016/j.powtec.2024.119408.

Samuel J, J., Mullis, A. M., & Borman, D. J. (2024). CFD modelling of Close-Coupled Gas Atomisation (CCGA) process by employing the Euler-Lagrange approach to understand melt flow instabilities. Chemical Engineering Science, 295, 120205. doi:10.1016/j.ces.2024.120205.

Wang, P., Li, X., Zhou, X., Chen, Z., Wang, M., Gan, P., Ren, X., & Yu, Z. (2024). Numerical Simulation on Metallic Droplet Deformation and Breakup Concerning Particle Morphology and Hollow Particle Formation During Gas Atomization. Transactions of Nonferrous Metals Society of China, 34(7), 2074–2094. doi:10.1016/S1003-6326(24)66526-X.

Muratal, O., Yamanoğlu, R., Duran, C., Gönülalan, Y., Akyıldız, Y., Koç, F. G., & Barutçuoğlu, B. (2024). Production of Ni-Hard Alloy Powders by Gas Atomization. International Journal of 3D Printing Technologies and Digital Industry, 8(1), 124–129. doi:10.46519/ij3dptdi.1402760.

Cui, C., Stern, F., Ellendt, N., Uhlenwinkel, V., Steinbacher, M., Tenkamp, J., Walther, F., & Fechte-Heinen, R. (2023). Gas Atomization of Duplex Stainless-Steel Powder for Laser Powder Bed Fusion. Materials, 16(1), 435. doi:10.3390/ma16010435.

Çetin, T., Akkaş, M., & Boz, M. (2020). Investigation of the effect of gas pressure on powder characterization of AM60 magnesium alloy powder produced by gas atomization method. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), 967–977. doi:10.17341/gazimmfd.497759.

Luo, S., Ouyang, Y., Wei, Q., Lai, S., Wu, Y., Wang, H., & Wang, H. (2023). Understanding the breakup behaviors of liquid jet in gas atomization for powder production. Materials and Design, 227, 111793. doi:10.1016/j.matdes.2023.111793.

Fharukh Ahmed, G. M., Alrobaian, A. A., Aabid, A., & Khan, S. A. (2018). Numerical analysis of convergent-divergent nozzle using finite element method. International Journal of Mechanical and Production Engineering Research and Development, 8(6), 373–382. doi:10.24247/ijmperddec201842.

Balaji, K., & Ravichandran, M. (2016). Numerical Investigation of Flow Field in a Convergent – Divergent Nozzle using Computational Fluid Dynamic Analysis. Proceedings of ICETETS 2016, Kings College of Engineering, Thanjavur, India, 24-26 February 2016, 838-844.

Khan, S. A., Ibrahim, O. M., & Aabid, A. (2021). CFD analysis of compressible flows in a convergent-divergent nozzle. Materials Today: Proceedings, 46, 2835–2842. doi:10.1016/j.matpr.2021.03.074.

Shariatzadeh, O. J., Abrishamkar, A., & Jafari, A. J. (2015). Computational Modeling of a Typical Supersonic Converging-Diverging Nozzle and Validation by Real Measured Data. Journal of Clean Energy Technologies, 3(3), 220–225. doi:10.7763/jocet.2015.v3.198.

Hamdan, N. S., & Kaneko, A. (2024). Effect of throat diameter on the cavitation phenomenon inside an aerated Venturi tube for microbubble production. Research Square (Preprint), 1-23. doi:10.21203/rs.3.rs-4716883/v1.

Palacio, J. A., Patino, I., & Orozco, W. (2023). Influence of the ratio of nozzle inlet to nozzle throat areas on the performance of a jet pump for vacuum applications using computational fluid dynamics. AIUB Journal of Science and Engineering, 22(3), 214–222. doi:10.53799/AJSE.V22I3.489.

Gonin, R., Horgue, P., Guibert, R., Fabre, D., Bourguet, R., Ammouri, F., & Vyazmina, E. (2022). A computational fluid dynamic study of the filling of a gaseous hydrogen tank under two contrasted scenarios. International Journal of Hydrogen Energy, 47(55), 23278-23292. doi:10.1016/j.ijhydene.2022.03.260.

Wang, P., Liu, J., Dong, Y., Zhao, H., Pang, J., & Zhang, J. (2023). Investigation on close-coupled gas atomization for Fe-based amorphous powder production via simulation and industrial trials: Part II. Particle flight and cooling during secondary atomization. Journal of Materials Research and Technology, 26, 9480–9498. doi:10.1016/j.jmrt.2023.09.249.

Schwenck, D., Ellendt, N., Fischer-Bühner, J., Hofmann, P., & Uhlenwinkel, V. (2017). A novel convergent–divergent annular nozzle design for close-coupled atomisation. Powder Metallurgy, 60(3), 198–207. doi:10.1080/00325899.2017.1291098.

Kaiser, R., Li, C., Yang, S., & Lee, D. (2018). A numerical simulation study of the path-resolved breakup behaviors of molten metal in high-pressure gas atomization: With emphasis on the role of shock waves in the gas/molten metal interaction. Advanced Powder Technology, 29(3), 623–630. doi:10.1016/j.apt.2017.12.003.

Wei, Y., Dong, R., Zhang, Y., & Liang, S. (2023). Study on the Interface Instability of a Shock Wave–Sub-Millimeter Liquid Droplet Interface and a Numerical Investigation of Its Breakup. Applied Sciences (Switzerland), 13(24), 13283. doi:10.3390/app132413283.

Popov, V. V., Grilli, M. L., Koptyug, A., Jaworska, L., Katz-Demyanetz, A., Klobčar, D., Balos, S., Postolnyi, B. O., & Goel, S. (2021). Powder bed fusion additive manufacturing using critical raw materials: A review. Materials, 14(4), 1–37. doi:10.3390/ma14040909.

Ahmed, F., Ali, U., Sarker, D., Marzbanrad, E., Choi, K., Mahmoodkhani, Y., & Toyserkani, E. (2020). Study of powder recycling and its effect on printed parts during laser powder-bed fusion of 17-4 PH stainless steel. Journal of Materials Processing Technology, 278, 116522. doi:10.1016/j.jmatprotec.2019.116522.

Li, R., Kim, Y. S., Tho, H. Van, Yum, Y. J., Kim, W. J., & Yang, S. Y. (2019). Additive manufacturing (AM) of piercing punches by the PBF method of metal 3D printing using mold steel powder materials. Journal of Mechanical Science and Technology, 33(2), 809–817. doi:10.1007/s12206-019-0137-0.

Gokcekaya, O., Ishimoto, T., Todo, T., Wang, P., & Nakano, T. (2021). Influence of powder characteristics on densification via crystallographic texture formation: Pure tungsten prepared by laser powder bed fusion. Additive Manufacturing Letters, 1, 100016. doi:10.1016/j.addlet.2021.100016.

Ninpetch, P., Kowitwarangkul, P., Mahathanabodee, S., Chalermkarnnon, P., & Rattanadecho, P. (2021). Computational investigation of thermal behavior and molten metal flow with moving laser heat source for selective laser melting process. Case Studies in Thermal Engineering, 24, 100860. doi:10.1016/j.csite.2021.100860.

Bhavar, V., Kattire, P., Patil, V., Khot, S., Gujar, K., & Singh, R. (2017). A review on powder bed fusion technology of metal additive manufacturing. Additive manufacturing handbook, 251-253. doi:10.1201/9781315119106-15.

Sidambe, A. T., Tian, Y., Prangnell, P. B., & Fox, P. (2019). Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten. International Journal of Refractory Metals and Hard Materials, 78, 254–263. doi:10.1016/j.ijrmhm.2018.10.004.

Fan, Q., Li, J., Zheng, L., Hao, C., Zhang, Q., & Wang, Y. (2024). Effect of heat treatment on microstructure and mechanical properties of selective laser melted Inconel 718 alloy. PLoS ONE, 19(9 September), 309156. doi:10.1371/journal.pone.0309156.

Iebba, M., Astarita, A., Mistretta, D., Colonna, I., Liberini, M., Scherillo, F., Pirozzi, C., Borrelli, R., Franchitti, S., & Squillace, A. (2017). Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4V Components. Journal of Materials Engineering and Performance, 26(8), 4138–4147. doi:10.1007/s11665-017-2796-2.

Sofia, D., Barletta, D., & Poletto, M. (2018). Laser sintering process of ceramic powders: The effect of particle size on the mechanical properties of sintered layers. Additive Manufacturing, 23, 215–224. doi:10.1016/j.addma.2018.08.012.

Zhang, S., Alavi, S., Kashani, A., Ma, Y., Zhan, Y., Dai, W., Li, W., & Mostaghimi, J. (2021). Simulation of Supersonic High-Pressure Gas Atomizer for Metal Powder Production. Journal of Thermal Spray Technology, 30(7), 1968–1994. doi:10.1007/s11666-021-01256-1.

Daskiran, C., Xue, X., Cui, F., Katz, J., & Boufadel, M. C. (2021). Large eddy simulation and experiment of shear breakup in liquid-liquid jet: Formation of ligaments and droplets. International Journal of Heat and Fluid Flow, 89, 108810. doi:10.1016/j.ijheatfluidflow.2021.108810.

Hanthanan Arachchilage, K., Haghshenas, M., Park, S., Zhou, L., Sohn, Y., McWilliams, B., Cho, K., & Kumar, R. (2019). Numerical simulation of high-pressure gas atomization of two-phase flow: Effect of gas pressure on droplet size distribution. Advanced Powder Technology, 30(11), 2726–2732. doi:10.1016/j.apt.2019.08.019.

Gonabadi, H., Hosseini, S. F., Chen, Y., & Bull, S. (2024). Size effects of voids on the mechanical properties of 3D printed parts. International Journal of Advanced Manufacturing Technology, 132(11–12), 5439–5456. doi:10.1007/s00170-024-13683-9.

Mehrabi, M., Gardy, J., Talebi, F. A., Farshchi, A., Hassanpour, A., & Bayly, A. E. (2023). An investigation of the effect of powder flowability on the powder spreading in additive manufacturing. Powder Technology, 413, 117997. doi:10.1016/j.powtec.2022.117997.

Rando, P., & Ramaioli, M. (2022). Numerical simulations of sintering coupled with heat transfer and application to 3D printing. Additive Manufacturing, 50, 102567. doi:10.1016/j.addma.2021.102567.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-03-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Phanphong Kongphan